# Journal of Data Science, Volume 24, Issue 1, 2026Hicks, S., Korthauer, K., Shen, X., Yan, J., & Zhang, H. (2026). Editorial: Statistical Aspects of Trustworthy Machine Learning. Journal of Data Science, 24(1), 1-3.
https://doi.org/10.6339/26-JDS241EDIJiang, Y., Zhang, Z., Martin, R., & Liu, C. (2026). The Typicality Principle and Its Implications for Statistics and Data Science. Journal of Data Science, 24(1), 4-25.
https://doi.org/10.6339/26-JDS1217Sankaran, K. (2026). Data Science Principles for Interpretable and Explainable AI. Journal of Data Science, 24(1), 26-52.
https://doi.org/10.6339/24-JDS1150Wang, L., Richardson, T. S., & Robins, J. M. (2026). Causal Inference: A Tale of Three Frameworks. Journal of Data Science, 24(1), 53-85.
https://doi.org/10.6339/25-JDS1211Zhou, Y. (2026). Reinforcement Learning: A Statistical Perspective. Journal of Data Science, 24(1), 86-105.
https://doi.org/10.6339/25-JDS1205Fu, V. (2026). AI for Science: Opportunities, Challenges, and Future Directions. Journal of Data Science, 24(1), 106-124.
https://doi.org/10.6339/25-JDS1214Goode, K., Tucker, J. D., Ries, D., & Hofmann, H. (2026). Explainable Machine Learning for Functional Data. Journal of Data Science, 24(1), 125-145.
https://doi.org/10.6339/25-JDS1212Song, Z., Cai, T., Lee, J. D., & Su, W. J. (2026). Reward Collapse in Aligning Large Language Models. Journal of Data Science, 24(1), 146-166.
https://doi.org/10.6339/25-JDS1201Liu, L. Y., Ma, H., Liu, Y., & Zhu, H. (2026). Subject-Specific Scalar-on-Image Regression. Journal of Data Science, 24(1), 167-186.
https://doi.org/10.6339/25-JDS1203Yu, P., Jiang, Y., Su, Z., Wu, J., Kong, L., & Jiang, B. (2026). Differentially Private Bayesian Envelope Regression via Sufficient Statistic Perturbation. Journal of Data Science, 24(1), 187-202.
https://doi.org/10.6339/25-JDS1194Uddin, M. B., Yin, M., & Dasgupta, N. (2026). A Designed Look at Artificial Intelligence from the Lens of Fairness. Journal of Data Science, 24(1), 203-217.
https://doi.org/10.6339/26-JDS1219Zhang, M., Sun, Y., & Liang, F. (2026). Magnitude Pruning of Large Pretrained Transformer Models with a Mixture Gaussian Prior. Journal of Data Science, 24(1), 218-238.
https://doi.org/10.6339/24-JDS1156D'Agostino McGowan, L., Peng, R. D., & Hicks, S. C. (2026). Quantifying the Alignment of a Data Analysis Between Analyst and Audience. Journal of Data Science, 24(1), 239-253.
https://doi.org/10.6339/25-JDS1189Wang, S., Xu, L., Liu, J., & Zhai, Y. (2026). Addressing the Challenges of AI-Generated Assignment Submissions in Education: Insights and Strategies. Journal of Data Science, 24(1), 254-260.
https://doi.org/10.6339/25-JDS1208Chan, S. L., & Pua, A. A. Y. (2026). Discussion of "Addressing the Challenges of AI-Generated Assignment Submissions in Education: Insights and Strategies". Journal of Data Science, 24(1), 261-263.
https://doi.org/10.6339/25-JDS1208CColumbus, A. (2026). Discussion of "Addressing the Challenges of AI-Generated Assignment Submissions in Education: Insights and Strategies". Journal of Data Science, 24(1), 264-266.
https://doi.org/10.6339/25-JDS1208DFurfaro, E. (2026). Discussion of "Addressing the Challenges of AI-Generated Assignment Submissions in Education: Insights and Strategies". Journal of Data Science, 24(1), 267-268.
https://doi.org/10.6339/25-JDS1208BHuo, X., & Ni, X. S. (2026). Discussion of "Addressing the Challenges of AI-Generated Assignment Submissions in Education: Insights and Strategies". Journal of Data Science, 24(1), 269-271.
https://doi.org/10.6339/25-JDS1208FLock, P. F. (2026). Discussion of "Addressing the Challenges of AI-Generated Assignment Submissions in Education: Insights and Strategies". Journal of Data Science, 24(1), 272-273.
https://doi.org/10.6339/25-JDS1208GLoux, T. (2026). Discussion of "Addressing the Challenges of AI-Generated Assignment Submissions in Education: Insights and Strategies". Journal of Data Science, 24(1), 274-275.
https://doi.org/10.6339/25-JDS1208ENicosia, A. (2026). Discussion of "Addressing the Challenges of AI-Generated Assignment Submissions in Education: Insights and Strategies". Journal of Data Science, 24(1), 276-281.
https://doi.org/10.6339/26-JDS1208HZaghi, A., & Harel, O. (2026). Discussion of "Addressing the Challenges of AI-Generated Assignment Submissions in Education: Insights and Strategies". Journal of Data Science, 24(1), 282-285.
https://doi.org/10.6339/25-JDS1208AWang, S., Xu, L., Liu, J., & Zhai, Y. (2026). Rejoinder: "Addressing the Challenges of AI-Generated Assignment Submissions in Education: Insights and Strategies". Journal of Data Science, 24(1), 286-291.
https://doi.org/10.6339/26-JDS1208I