Lopes does concede that a language that "addresses an important practical need" can become popular, regardless of whether it is professionally designed. There are interesting parallels between people's attitudes about new programming languages and people's attitudes about new statistical methods. I sometimes hear statisticians rail against newer data mining methods as "black boxes" that are produced by the computer science or machine learning communities. What are the complaints? Well, in analogy with Lopes's arguments, here are some arguments against some newer predictive techniques:
The opposite argument (that statistics need not be constrained by rigor) is presented a 2001 article, "Statistical Modeling: The Two Cultures," in which Leo Breiman (famous for his work on classification and regression trees, bagging, and random forests) criticizes the statistical community for its commitment to data models. Beiman states that "this commitment has led to irrelevant theory, questionable conclusions, and has kept statisticians from working on a large range of interesting current problems." Breiman says that "statisticians need to be more pragmatic. Given a statistical problem, find a good solution, whether it is a data model, an algorithmic model...or a completely different approach." With minor modification, his arguments also apply to new programming languages: given a programming problem, find a language that helps you solve it easily. The Breiman article is followed by criticisms by Sir David Cox and Brad Efron, who defend traditional statistics. Efron's comments begin: "At first glance Leo Breiman’s stimulating paper looks like an argument against parsimony and scientific insight, and in favor of black boxes with lots of knobs to twiddle. At second glance it still looks that way." To me, this sounds like an argument Lopes might favor. Where do you fall in this spectrum? Are you a fervent proponent of new programming languages or has it been a while since you last learned a new language? Do you gravitate to new data mining techniques or do you favor the statistical rigor of logistic regression and mixed models? What arguments do you use to justify your choices?