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What this course is

▶ A gentle introduction to concepts used in Bayesian model
selection and averaging. Approximate methods based on BIC.

▶ A good starting place to begin moving towards fully Bayesian
methods.

▶ An overview of concepts, and an open forum for questions and
discussion.

▶ I illustrate the approach with an R demo.



What this course is not

▶ A fully-described Bayesian approach to model averaging for
categorical data. This would require specialized knowledge in
Bayesian modeling, sampling algorithms and other
computational techniques.

▶ I will present formulas and an R demo for the BIC
approximation I describe here.

▶ I will also how to use the BAS package (M. Clyde 2022) for
fully Bayesian analysis on the same data. Not enough time to
fully describe the machinery behind this package. This is a
technician’s view.

▶ References for fully Bayesian approach: (Liang et al. 2008) (Li
and Clyde 2018) (M. A. Clyde, Ghosh, and Littman 2011).



Today’s lecture has three parts

1. Quick review of logistic regression

2. Bayesian model selection and averaging, approximate BIC
approach + R demo.

3. Other approaches to weighing models, i.e., stacking (brief)



Part 1: Review of logistic regression.
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Consider the crab satellite data

Figure 1: A horseshoe crab



Overview of crab data

▶ Data obtained from Alan Agresti’s Introduction to Categorical
Data Analysis book (Agresti 2018).

▶ The data measure whether or not a female horseshoe crab has
additional male suitors beyond their current mate, essentially.
The outcome is binary.

▶ There are four candidate predictors including: shell width,
weight, shell color, spine condition.



The multiple logistic regression model

logit[P(Y = 1)] = log
( π(x)

1 − π(x)
)

= β0 + β1x1 + . . . + βpxp

▶ Y is a binary outcome random variable.

▶ β0 is the y-intercept, β1, . . . , βp are coefficients. The β terms
are unknown parameters.

▶ The values x1, . . . , xp are candidate predictor variables that are
assumed fixed.

▶ π(x) is the probability of an event as a fucntion of predictors.
For notational brevity, recognize that π(x) depends on all of
the xj values, j = 1, . . . , p.



The data contain four potential predictors

▶ Model selection involves choosing single “best” model, and all
subsequent inference is based on that model. Many selection
approaches available.

▶ There are 2p possible models. Sixteen for the crab esxample.
Model space grows exponentially with number of new
predictors.

▶ The above approach ignores the uncertainty in the model
selection process. Model averaging is one way to sensibly
conduct inference in the context of all available models.

▶ In cases where the p is large, the model space becomes too
large to computationally assess every model. Algorithms such
as Markov Chain Monte Carlo Model Composition (MC3) can
be used to search the space effectively. See (Hoeting et al.
1999) for a good overview.



Plot the data
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Multicollinearity is naturally a concern as well
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History of GLMs
▶ GLMs generalized in 1970s. Logistic regression formalized in

1920s.

▶ Fisher scoring algorithm applies generally to GLMs which make
them very popular and easy to implement in software.

▶ Here are some popular models



Logistic regression with categorical predictors

▶ Like all linear models, categorical variables can be included in
logistic regression by forming an appropriate array of zeroes
and ones in the design matrix.

▶ The two nomial variables (color and spine), can be handled in
this manner. Analyses in the book justify treating these as
linear trends, which I will do in the R demo subsequently



Part 2 : Bayesian model selection and averaging



Consider a set of candidate models

▶ For the variable subset selection problem, there are K = 2p

models, with a model for every possible combination of
variables. Typical to include intercept in every model.

▶ Denote the models Mk for k = 1, . . . , K . For the Bayesian
approach to model selection and averaging, each model requires
a prior probability P(Mk) ≥ 0. Note

∑K
k=1 P(Mk) = 1.

▶ We will consider a uniform prior on the model space in our R
demo. A great paper on specification of model priors: (Scott
and Berger 2010)



Review of Bayesian information Criterion

▶ A well known approach to model selection is to compute an
information criterion (e.g., AIC, BIC, their extensions) for each
of the k = 1, . . . , K models, then select the model with the
optimal value of the information criterion

▶ AIC chooses models that are too big, but BIC is model
selection consistent for regular problems.

▶ BIC has a term that rewards high likelihood and penalizes
complexity (i.e., number of parameters.)

▶ BICk = −2ln(L̂k), where L̂k is maximized log likelihood for
model k.

▶ It is very easy to obtain BIC for models from software.



The integrated likelihood is an important quantity in model
selection and averaging.

▶ Since the different candidate models have different numbers of
parameters, the first step in Bayesian model selection is to
integrate the parameters out of the joint density of the data
and the parameters.

P(y |Mk) =
∫

Θ
P(y |θk , Mk)P(θk |Mk)dθk

▶ The P(θk |Mk) priors on parameters must be chosen with care
in order for Bayesian model selection to work well. A great
history of the problem is in the literature review here:
(Ormerod et al. 2017).

▶ This step can sometimes be tedious - analytic solution
infrequently available.



Bayes factor comparing model j to k

▶ The Bayes factor is the ratio of integrated likelihoods from two
ccandidate models.

BFjk = P(y |Mj)
P(y |Mk) .

▶ The Bayes factor is the quantity by which the data update the
prior odds to posterior odds. See (Lavine and Schervish 1999)

▶ For our approximate BIC approach, access to Bayes factors is a
bit of an intermediate step.



Approximation to Bayes factors using BIC

BFkj ≈ e− 1
2 (BICk−BICj ),

▶ In the last decade have been surprised to learn of this
approximation and especially how not-well-known it is
compared to BIC. Doesn’t it seem like everybody knows BIC?



Posterior model probabilities

▶ Once the user has specified prior model probabilities P(Mk) for
k = 1, . . . , K , an application of Bayes rule provides posterior
model probabilities.

P(Mk |y) = P(y |Mk)P(Mk)∑K
j=1 P(y |Mj)P(Mj)

.



From Bayes factors to posterior model probabilities

P(Mk |y) = P(Mk)
P(M1)BFk1P(M1|y)

▶ WLOG let model 1 be the baseline model

P(Mk |y) = P(Mk)
P(M1)BFk1P(M1|y)



Obtaining the posterior model probability of the baseline
model

P(M1|y) =
( K∑

k=1

P(Mk)
P(M1)BFk1

)−1



Bayesian model averaging

▶ For a quantity of interest ∆ (e.g. parameter value, inclusion in
model), the law of total probability

P(∆|y) =
K∑

k=1
P(∆|Mk , y)P(Mk |y).

▶ KEY POINT: Whatever it is you care about, the way to get a
Bayesian model averaged distribution for that quantity is to use
posterior model probabilities P(Mk |y) as weights, average
across the models.

▶ This is a straightforward application of the law of total
probability.



Posterior inclusion probabilities

▶ By setting ∆ as an indicator in cases where an effect of interest
is in a model, you can use BMA to calculate the probability
that an effects is non-null.

∆ =
{

0, if candidate predictor is not in model
1, if candidate predictor is in the model,

Then re-express BMA equation as

P(∆ = 1|y) =
K∑

k=1
P(∆ = 1, Mk |y)



Let’s do an R demo!

▶ Scope: manually implement the BIC approximation to posterior
model probabilities and inclusion probabilities.

▶ Further: I will demonstrate usage of the BAS package to
implement fully Bayesian model averaging (including posterior
distributions on coefficients)

▶ Live session: As time permits we can field questions with the
code.



Downsides of BMA
▶ Tacitly assumes true model is in candidate set (m closed).

More realistically, the true model is not in the candidate set (m
open).

▶ BMA concentrates posterior model probability on a single
model as sample size increases (Yao et al. 2018). The model
that wins is closest to the true model in s KL divergence sense.
So you end up giving basically 100% of posterior model
probability to a model which is not technically the true one in
m open setting.

▶ Recent work has been done on the stacking of Bayesian
predictive distributions(Yao et al. 2018). The basic idea of
stacking is to weigh the candidate models based on their ability
to predict out-of-sample data rather than posterior model
probability. This is useful for prediction and overcomes the
tendency of BMA to put all posterior model probability on a
single model as sample size increases.
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