
Introduction to computing with BART

Rodney Sparapani
Medical College of Wisconsin

Copyright (c) 2017 Rodney Sparapani

September 30: BART Bootcamp
Biostatistics in the Modern Computing Era

Medical College of Wisconsin, Milwaukee campus

Outline

I Installing the BART R package
I Comparison of BART R packages on CRAN
I BART, ensembles and prediction error
I A brief history and overview of multi-threaded computing
I Multi-threading with the BART R package
I Live demonstration of multi-threading with BART
I Creating a BART executable with C++ sans R

Installing our BART R package
I Our BART R package (current version 1.3) is on

the Comprehensive R Archive Network (CRAN)
I https://cran.r-project.org/package=BART
I Install into your personal vs. global R library
I ∼/.Rprofile
I # my .Rprofile contains this personal library
I .libPaths("∼/R/3.4.0/lib64/R/library")
I Installing BART (which depends on the Rcpp package)
I From source with the Unix command line

(from here on Unix means UNIX/Linux/macOS)
I Requires a full C++ toolchain like GNU GCC or Apple Xcode
I $ R CMD INSTALL BART_1.3.tar.gz
I From the R prompt for Windows and Unix
I > options(repos=c(
I + CRAN="https://cran.r-project.org"))
I > install.packages("BART", dependencies=TRUE)

https://cran.r-project.org/package=BART

BART R packages on CRAN comparison

dbarts BART bartMachine
Author(s) Dorie McCulloch Kapelner

Sparapani Bleich
Computer language C++ C++ java
Dependencies None Rcpp rJava
Multi-threaded No Yes Yes
predict function No Yes Yes
Missing data handling No No* Yes
Variable selection No No* Yes
Tree transition proposals 4 3 3
Partial dependence plots Yes No* Yes
Continuous & binary Yes Yes Yes
Time-to-event No Yes No
Convergence diagnostics Continuous All Continuous
Thinning Yes Yes No
Cross-validation Yes No* Yes
*you have learned, or will learn, how to do these today

BART, ensembles and prediction error
I mean squared error = bias2 + variance

I There is a trade-off between the bias and variance

I Consider the spectrum of trade-offs

I Linear regression is on the high bias/low variance end

I Single-tree regression is on the low bias/high variance end

I Ensembles are in the middle: medium bias/medium variance

I BART is in the class of ensemble models which both theoretically,
and in practice, have excellent out-of-sample predictive
performance

Krogh & Solich 1997 Physical Review E
Baldi & Brunak 2001 “Bioinformatics: machine learning approach”
Kuhn & Johnson 2013 “Applied Predictive Modeling”

A brief history of multi-threading
I 1961: Burroughs B5000 Asymmetric Multiprocessing
I 1962: Burroughs D825 Symmetric Multiprocessing (SMP)
I 1967: Amdahl’s law Gain=((1 − b)/C + b)−1

I 2000: AMD64 architecure debuts: native execution of
32-bit x86 legacy code as well as new 64-bit x86 instructions

I 2003: Linux kernel 2.6 unleashes SMP support
I 2005: AMD Opteron dual core chips debut
I 2007: AMD Opteron 4 core chips debut
I 2008: Intel Xeon 4 cores (8 threads) debut
I 2009: AMD Opteron 6 core chips debut
I 2010: AMD Opteron 12 core chips debut
I 2010: Intel Xeon 8 cores (16 threads) debut
I 2011: AMD Opteron 16 core chips debut

Modern multi-threading software frameworks
I Message Passing Interface (MPI) for multiple nodes
I Pratola, Chipman, Gattiker, Higdon, McCulloch, Rust. Parallel

Bayesian Additive Regression Trees. JCGS 2014;23:830-852
https://arxiv.org/abs/1309.1906

I OpenMP for single nodes: used by BART for predict
I detected by the GNU autotools when BART installed
I defines a C pre-processor macro (or not): _OPENMP
I not for Windows: GNU autotools not available (Cygwin)
I not for macOS: not supported by Apple Xcode (clang)
I Forking for single nodes: parallel R package
I Forking not supported on Windows
I see the help page: ?mcparallel
I Forking used by BART for posterior sampling
I mc.wbart, mc.pbart, mc.surv.bart, mc.recur.bart
I can be used by the predict function instead of OpenMP

https://arxiv.org/abs/1309.1906

Multi-threading: can I run multiple threads?

I Windows: not currently supported by R or CRAN
I Unix only at this point
I OpenMP
> library(BART)
> mc.cores.openmp()

I Returns 0 if OpenMP not available; 1 if it is
I Forking
> library(parallel)
> detectCores()

I Returns 1 or more (and occasionally NA)

MCMC is “embarrassingly” parallel

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Chains

P
ro

po
rt

io
na

te
 le

ng
th

 o
f c

ha
in

 p
ro

ce
ss

in
g

tim
e

b

Amdahl’s Law and the MCMC Corollary
I Gain= 1−b+b

(1−b)/C+b = 1
(1−b)/C+b and b is the burn-in fraction

1 2 5 10 20 50

0
5

10
15

20
25

30

C: number of CPU

G
ai

n

0.025

0.1

Multi-threading: random access memory (RAM) I

I IEEE 754 specifies that every double-precision number
consumes 8 bytes (64 bits) so you can estimate your needs

I If A is m × n, then RAM(A) = 8 × m × n bytes
I If you consume all of the physical RAM, the system will “swap”

segments out to virtual RAM which are disk files:
this will degrade performance and possibly crash the system

I On Unix, you can monitor memory and swap usage with top
I Within R, you can determine the size of an object with the
object.size function

Multi-threading: random access memory (RAM) II

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

...
am1 am2 · · · amn


I R matrices are column-major: [a11, a21, . . . , a12, a22, . . .]

I C++ matrices are row-major: [a11, a12, . . . , a21, a22, . . .]

I This is easily addressed with a transpose
instead of passing A from R to C++, we pass At

I R passes objects by pointer, but it is copy-on-write
I All objects in the parent thread can be read by the child thread

from the pointer without a copy, but when an object is
altered/written by the child, then a new copy is created

I RAM(A) = 8 × m × n × C and C is the no. of children
I If the parent transposes, we avoid the copy: A <- t(A)

Multi-threading: interactive vs. batch processing
I Interactive jobs must take precedence over batch jobs to prevent

the user experience from suffering high latency
I Examples of interactive activity: typing at the command line,

editing files with Emacs, reading email, browsing the web
I In the tools R package, there is the psnice function
I Paraphrased from the ?psnice help page

Unix has a concept of process priority. Priority is
assigned values from 0 to 39 with 20 being the normal
priority and (counter-intuitively) larger numeric values
denoting lower priority. Adding to the complexity, there
is a “nice” value, the amount by which the priority
exceeds 20. Processes with higher nice values will
receive less CPU time than those with normal priority.
Generally, processes with nice 19 are only run when the
system would otherwise be idle.

I by default, the BART package children have nice set to 19

wbart and mc.wbart input and output
post <- wbart(x.train, y.train, ...,

ndpost=M, keepevery=1) or
post <- mc.wbart(x.train, y.train, ...,

ndpost=M, keepevery=1, mc.cores=2, seed=99)

Input matrices: x.train and, optionally, x.test: xi
x1
x2
...

xN


Output object, post, of type wbart which is essentially a list

Matrices: post$yhat.train and post$yhat.test: ŷim = fm(xi) ŷ11 . . . ŷN1
...

...
...

ŷ1M . . . ŷNM



predict input and output
pred <- predict(post, x.test, mc.cores=1, ...)
post object of type wbart (continuous), pbart (binary probit),
lbart (binary logistic), survbart (survival analysis),
criskbart (competing risks) or recurbart (recurrent events)

Input matrices: x.test: xi
x1
x2
...

xQ


Output matrix for wbart, pbart and lbart: ŷim = fm(xi) ŷ11 . . . ŷQ1

...
...

...
ŷ1M . . . ŷQM



The parallel R package and mc.wbart
mc.wbart <- function(..., nice=19, transposed=FALSE) {
RNGkind("L’Ecuyer-CMRG")
set.seed(seed)
parallel::mc.reset.stream()
if(!transposed) {

x.train <- t(x.train)
x.test <- t(x.test)

}
mc.cores <- min(c(mc.cores, parallel::detectCores()))
...
for(i in 1:mc.cores)

parallel::mcparallel({psnice(value=nice);
wbart(..., transposed=TRUE)},
silent=(i!=1))
to avoid duplication of output
capture from first child only

post.list <- parallel::mccollect()

Multi-threading live demonstration

I With the system.file function, you can find where R installed
the BART package as well as files and sub-directories

I system.file(package=’BART’)

I system.file(’demo’, package=’BART’)

I system.file(’demo/friedman.wbart.R’,
package=’BART’)

I For the demos, you can use the demo function
I demo(package=’BART’)

I demo(’friedman.wbart’, package=’BART’)

I But then you have to press Return after each plot

Creating a BART executable with C++ sans R

I The Rcpp package is a dependency for the BART package
I Rcpp provides a seamless transition by passing object pointers

from R to C++ and back again
I Rcpp allows C++ code to rely on the R RNG
I In our package, you can build C++ BART without R/Rcpp
I C++ BART is built with the standalone Rmath library which is part

of the R project and contained in the R source code
I Rmath provides an R compliant RNG and all of the useful R

functions like pnorm
I You can optionally build with the RNG provided by the C++
random class from the Standard Template Library (STL)

I system.file(’cxx-ex’, package=’BART’)

I system.file(’cxx-ex/Makefile’, package=’BART’)

