
In search of the number of clusters 

Foreword. Some of the current clustering algorithms need the preliminary 

knowledge of the expected number of clusters. Often, the solution is 

reached after a sequence of tentative cluster numbers. 

Because even the language about clustering, like center, minimum 

deviance, etc. refer to a gravitational mindset, it may be interesting to 

frame the problem explicitly as a gravitational one trying to apply the 

Newton law to data.     

 

A parallel algorithm.  

Given the number of clusters, the first step some packages start with is 

the search of the so called “initial seeds”. I miss any info about the 

sensitivity of the solution to the set of seeds by package. I suspect, 

anyway, that the solution may depend on the set of initial seeds, because 

initial seeds are iteratively updated after the aggregation of a new point to 

the growing clusters around them. This family of algorithms is thus 

sequential and we know that going on sequentially may lead to different 

solutions when you start from different starting points. 

Ideally, the algorithm should be parallel where at any step all points 

simultaneously contribute to the solution.   

Well, the gravitational algorithm is parallel. Without knowing the number 

of clusters, you can imagine that each weighted point follows the Newton 

gravitational law 

𝐹 = 𝑔
𝑀𝑚

𝑟2     

 

Given a point having a weight 𝑀, you compute the gravitational force 

exerted on it by all the other points and let the Newton’s law to operate. 

For your target point, in the time interval 𝑑𝑡, you have the acceleration 𝑎, 

the infinitesimal velocity 𝑑𝑣 and the infinitesimal displacement 𝑑𝑠  
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To avoid going too fast, you need to state a maximum 𝑑𝑠. A reasonable 

choice would be a fraction of the range of the variables that concur to 

clustering. Because 𝑔 and 𝑑𝑡 are both constant, you can disregard 𝑔 and 

act only on 𝑑𝑡 to reach your objective. Implicitly, you set 𝑔 =  1.  

The gravitational algorithm is parallel by its very nature, because all points 

are under the effect of all the other points. Any sequential shortcoming is 



thus avoided and the points’ cloud clusters around barycenter’s that are 

created by the gravitational law in a manner much similar to what 

happened with the planetary system where asteroids converged because 

of the Newton’s law and created planets. 

 

A comparison.  The natural case for a comparison is the Fisher’s Irish 

problem. I’m currently using SAS so my comparison is with the SAS 

FastClus procedure. Because the species are known, the test is in the fit 

between the clusters and the species. 

  

SAS. The case is taken from the SAS library of examples. 
 

proc fastclus data=iris maxc=3 maxiter=10 out=clus; 

   var SepalLength SepalWidth PetalLength PetalWidth; 

run; 

 

proc freq; 

   tables cluster*Species; 

run;  

 

CLUSTER Species Frequency Percent Cumulative 

Frequency 

Cumulative 

Percent 

1 Versicolor 2 1.33 2 1.33 

1 Virginica 36 24.00 38 25.33 

2 Setosa 50 33.33 88 58.67 

3 Versicolor 48 32.00 136 90.67 

3 Virginica 14 9.33 150 100.00 

 

SAS does a pretty good job. Setosa is 100% in the cluster 2, Versicolor is 

96% in the cluster 3, except a couple of points that belong to cluster 1, 

while Virginica is split between the clusters 1 (72%) and 3 (28%). 

 

Gravitational method. 

 

First you need to compute the pairwise distances between all points. A 

self-join of the table pmeno, that keeps centered data, is enough. 

Centering is useful, though not needed. Newton laws have a Universal 

validity, you should translate nothing. Centering eases interpretation. 
 

proc sql; 

   create table grav.paira as 

   select  

a.seq as seqa, a.seplc as spl1, a.sepwc as spw1, a.petlc as ptl1, a.petwc 

as ptw1,  



b.seq as seqb, b.seplc as spl2, b.sepwc as spw2, b.petlc as ptl2, b.petwc 

as ptw2 

   from grav.pmeno as a, grav.pmeno as b 

   where a.seq ne b.seq  

   order by a.seq, b.seq 

   ; 

 

Variables names have been shortened and the termination c was added 

to mean centered. In addition, in the resulting table they are again 

shortened and distinguished by the parent table.  

Now you delete points with a zero distance (you would get a black hole!) 
 
data grav.notequal; 

    set grav.paira; 

if (spl1-spl2) eq 0 and spw1-spw2) eq 0 and ptl1-ptl2) eq 0 and  

   (ptw1-ptw2) eq 0  then delete; 

 run; 

 
Now you compute the pairwise distances and displacements 
    

data grav.sqdist; 

 set grav.notequal; 

 dspl = spl1-spl2; 

 dspw = spw1-spw2; 

 dptl = ptl1-ptl2; 

 dptw = ptw1-ptw2; 

 sqdist = dspl**2 + dspw**2 + dptl**2 + dptw**2; 

 dt = 0.5; 

 M = 1; 

 ds1 = -dspl*(M/sqdist)*dt**2; 

 ds2 = -dspw*(M/sqdist)*dt**2; 

 ds3 = -dptl*(M/sqdist)*dt**2; 

 ds4 = -dptw*(M/sqdist)*dt**2; 

 run; 

 

Each point is subject to a force given by the sum of all forces exerted on 

it by the other points. You then sum the displacements by point 
 

proc means data = grav.sqdist noprint; 

by seqa; 

var ds1 ds2 ds3 ds4; 

output out = grav.step0a sum=; 

run; 

 

Gravitational forces have to be recalculated after each iteration because 

points shifts are not proportional to the original distances. 

After just 3 iterations we come to the following point arrangement for 

sepals and petals 

 



 
 

 



The clusters are found to be three without specifying them in advance and 

the cross tabulation is  

 

Species clust Frequency Percent Cumulative 

Frequency 

Cumulative 

Percent 

Setosa 2 50 33.33 50 33.33 

Versicolor 2 4 2.67 54 36.00 

Versicolor 3 46 30.67 100 66.67 

Virginica 3 50 33.33 150 100.00 

 

An almost perfect job. 

 

The method can be easily applied to the disentanglement of normal 

components in a normal mixture.   


