
PASSING A THRESHOLD IS A MATTER OF INFINITESIMALS 

A WARNING FOR  VALUE ‘ADDICTS’ 

 
Notwithstanding the cautionary notes recently released in multiple ASA papers, I fear that 

the still many  values ‘addicts’ will continue in their dichotomization attitude due to the 

difficulty humans face in changing their habits. For the significant / not significant decision 

drawn from the comparison between a stated  value and a sample p value, the 

computational accuracy plays a critical role. For instance, in a unilateral comparison 
between two independent sample proportions, the observed difference   

1. is deemed significant at the given  if the sample p is less than  

2. otherwise, it is deemed not significant  
 
However, because p values are estimated with approximations, like when one leverages 
the asymptotic normality of the distribution of the difference, significant becomes a fuzzy 

term when the size of the discrepancy between  and the p falls within the numerical 

approximation entailed by the assumptions and the algorithms involved in computing p. 

Therefore, stating that the predefined  is greater or lesser with respect to the observed 

p, is not a “certain” or “true” statement, inasmuch as its computational approximations 
spreads a foggy cloud around the discrepancy between the two. The consideration of 
coverage probabilities is commonplace in building confidence intervals around a 
proportion in small samples. For example, with a sample of 10 cases and a proportion of 
0.95, one finds that the distribution 𝐵𝑖𝑛(10, 0.95) is far from normal. Therefore, the 
coverage probability differs from the nominal one taken from the asymptotic normal 
distribution. However, in the comparison of proportions between two samples, 
questioning the numerical accuracy of p is a bit difficult and thus less common. The 
binomial distribution can be taken as a typical case because it has a finite range, while 
the asymptotic normal distribution enjoys infinite tails. Therefore, at least when tests boil 
down to a unilateral or bilateral tail problem, it happens that something actually exceeding 
the distribution’s range is included in the calculation of p. 
This paper is structured as follows  
1. construction of the “true distribution” of the difference 𝑑 between two binomial 

proportions in two independent samples of 10 cases with different expected 
proportions by  

a. directly computing the differences from the scalar product of the two binomial 
distributions 

b. computing their joint probability as the product of the two marginal probabilities 
2. evaluation of the probability of a difference 𝑑 exceeding a stated 𝛿, based on the 

(cumulative) distribution of the difference. Therefore, the question to be answered is 
“what is the probability that in sample’s replicates the observed difference 𝑑 of the two 

proportions happens to be bigger than 𝛿?”  
3. evaluation of the same under the (cumulative) asymptotic normal approximation 
4. comparison between (2) and (3) 
5. Conclusions and recommendations 



The true distribution of the difference between two proportions in independent 

samples.  For building the binomial distribution of a proportion 𝑝 in a sample of size n, 

you need the 𝑛 +  1 binomial coefficients of a polynomial of degree 𝑛. When the sample 

size does not exceed a few dozen cases, leveraging the Stifel formula is a very effective 

way to iteratively compute binomial coefficients. For wider samples you can use the 

dedicated function in your package. The difference of the proportions between two 

independent samples is computed as a straightforward application of the SQL scalar 

product of the two tables of binomial coefficients. Now you need the joint distribution of 

the two sample’s proportions. You start with the bivariate binomial distribution and multiply 

the difference by its probability. Independence implies that the joint probability amounts 

to the product of the terms of the polynomial (𝑝1 + 𝑞1)𝑛 and (𝑝2 + 𝑞2)𝑛. Neither new nor 

difficult.   

Here you find an extract of the difference table for the case of the two samples (𝑛1 =

10, 𝑝1 = 0.50) and (𝑛2 = 10, 𝑝2 = 0.50). So, both samples show an expected proportion 

of 0.50. In the table, deg’s are the polynomial degrees, coeff’s are the binomial 

coefficients, jointp is the joint probability pobs and pobs1 are the observable proportions 

in the first and second sample respectively and diffp is the observable proportion 

difference between the two samples. At the end of the table, where the role of deg’s 

inverts, the table will symmetrically decrease (not shown). The last column, cum, is the 

(cumulative) distribution. An expert’s eye would easily recognize the convolution of the 

two marginals distributions. In fact, convolutions span the bidimensional matrix along the 

principal diagonal in the case of sums and along the symmetric minor diagonal in the case 

of differences.   

 

deg coeff deg1 coeff1 diff jointp pobs pobs1 diffp cum 

0 1 10 1 -10 0.000000954 0 1 -1     0.000000954 

0 1 9 10 -9 0.000009537 0 0.9 -0.9 0.00001049 

1 10 10 1 -9 0.000009537 0.1 1 -0.9 0.000020027 

0 1 8 45 -8 0.000042915 0 0.8 -0.8 0.000062943 

1 10 9 10 -8 0.000095367 0.1 0.9 -0.8 0.00015831 

2 45 10 1 -8 0.000042915 0.2 1 -0.8 0.000201225 

1 10 8 45 -7 0.000429153 0.1 0.8 -0.7 0.000630379 

0 1 7 120 -7 0.000114441 0 0.7 -0.7 0.00074482 

2 45 9 10 -7 0.000429153 0.2 0.9 -0.7 0.00117397 

3 120 10 1 -7 0.000114441 0.3 1 -0.7 0.00128841 

2 45 8 45 -6 0.00193119 0.2 0.8 -0.6 0.0032196 

3 120 9 10 -6 0.00114441 0.3 0.9 -0.6 0.00436401 

0 1 6 210 -6 0.000200272 0 0.6 -0.6 0.00456429 

1 10 7 120 -6 0.00114441 0.1 0.7 -0.6 0.00570869 

4 210 10 1 -6 0.000200272 0.4 1 -0.6 0.00590897 

0 1 5 252 -5 0.000240326 0 0.5 -0.5 0.00614929 

1 10 6 210 -5 0.00200272 0.1 0.6 -0.5 0.008152 

3 120 8 45 -5 0.00514984 0.3 0.8 -0.5 0.0133018 

 



It is worthwhile to note that the joint probability is a function of the degrees of both 

polynomials, so that equal differences enjoy different probabilities because they come 

from different marginal probabilities due to the setting of polynomials’ degrees.  

Even in the simple case of equal proportions, using the normal asymptotic distribution 

leads to a different p with respect to that of the true distribution. The true distribution 

shows that under the hypothesis that 𝑑𝑖𝑓𝑓 =  0,  the p value of a difference in proportions 

of more than 0.3 is 1 −  0.9423340 = 0.057666  

 

diff cumulative  
 0.3  0.942340851  

 

The normal asymptotic distribution would say 0.9101437, a ‘bad’ approximation, indeed. 

You wouldn’t expect such a difference because a variable having a 𝐵𝑖𝑛(0.5, 10) 

distribution is asymptotically normal and because the difference between two 

independent normal variables is indeed normal. Therefore, the true distribution and its 

normal asymptotic approximation should provide close estimates of p in both computing 

ways. This doesn’t happen, however. The reason why is in a too “easy” switch to the 

asymptotic distribution when performing tests.  

Things get worse when 𝑝 and 𝑝1 are far away from 0.50, like 𝐵𝑖𝑛(10, 0.95) and 

𝐵𝑖𝑛(10, 0.90). Now the distribution of the difference is no more symmetric. The expected 

difference is of course 0.5. What is the probability of a difference of a least 0.6? 

 

diff cumulative 

0.6 0.99999442 

 

The probability of a difference beyond 0.6 is virtually 0. The normal approximation would 

say 0.994742377 with an approximation of around 0.005. However, though apparently 

small, it could make the passing of a given threshold seem to happen while it doesn’t. 

 

Conclusions and recommendations. Beyond the obvious recommendation of stopping 

dichotomization, I would suggest  

1. A bit of caution in using those beautiful asymptotic convergence theorems in that they 

entail numerical inaccuracies in the calculation of p.  

2. Follow the ongoing trend of explicit computation of statistical parameters leveraging 

the immense computing power now available 

  

 

 

  


