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1 Introduction

With the development of observing techniques and computing devices, it has become eas-

ier and more common to obtain large datasets. Statistical inference in spatial statistics

becomes computationally challenging. For decades, various approximation methods have

been proposed to model and analyze large-scale spatial data when the exact computation

is infeasible. However, in the literature, the performance of the statistical inference us-

ing those proposed approximation methods was usually assessed with small and medium

datasets only, for which the exact solution can be obtained. Then, for real-world large

datasets, the exact computation was no longer feasible. The inference with approximation

methods was often validated empirically or via prediction accuracy with the fitted model.

In this competition, the goal is to reassess existing approximation methods on large

spatial datasets in a uniform way that guarantees a fair comparison. The results will be

compared to the exact solution provided by the ExaGeoStat [1] software (https://github.

com/ecrc/exageostat). We generated a collection of synthetic datasets on a large scale

from a set of selected true models. We aim at validating the statistical performance of the

state-of-the-art approximation methods in terms of modeling, inference, and prediction.

The selected true models cover disparate spatial properties to ensure a fair comparison

among all the competitors’ methods.

1

https://github.com/ecrc/exageostat
https://github.com/ecrc/exageostat
https://github.com/ecrc/exageostat
https://github.com/ecrc/exageostat


2 Datasets

This competition focuses on two parts. The first part is to infer the parameters of the spatial

covariance of Gaussian random fields and then to make predictions at new locations. The

second part solely focuses on making predictions at new locations without restrictions of

Gaussian process models.

2.1 Model inference and prediction for Gaussian random fields

2.1.1 Parameter estimation (Sub-competition 1a)

We have generated 16 datasets from different zero-mean stationary isotropic Gaussian

random fields with a Matérn covariance using ExaGeoStat. The spatial domain is the unit

square [0, 1] × [0, 1] in Euclidean space. The training dataset consists of 90,000 location

coordinates and associated values. The participant team is asked to provide the

estimated values of the four parameters in the Matérn covariance function

shown in Equation (1) (the partial sill σ2, the range β > 0, the smoothness

ν > 0, and the nugget τ 2) for each dataset.

cov
{
Z(si), Z(sj)

}
= σ2 21−ν

Γ(ν)

(‖si − sj‖
β

)ν
Kν

(‖si − sj‖
β

)
+ τ 21{i=j}, (1)

where cov
{
Z(si), Z(sj)

}
is the Matérn covariance between realizations of Z(·) at locations

si and sj, Kν(·) is the modified Bessel function of the second kind of order ν, Γ(·) is the

Gamma function, and 1 is the indicator function.

2.1.2 Prediction (Sub-competition 1b)

For each of the 16 training datasets, we also provide the corresponding testing dataset. Each

of the 16 testing datasets consists of 10,000 new location coordinates. The participant

team is asked to make predictions at the 10,000 locations.

1. If the participant team also participates in Sub-competition 1a, the pre-

diction is then asked to be made based on the inferred model in Sub-

competition 1a.
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2. If the participant team does not participate in Sub-competition 1a and the

adopted method cannot provide parameter estimation in Sub-competition

1a, then the participant team is free to choose any models or algorithms

for making the prediction.

2.2 Prediction for random fields (Sub-competitions 2a and 2b)

We provide two datasets generated from different random fields in each of Sub-competitions

2a and 2b. The two datasets in Sub-competitions 2b are bigger in size. The spatial domain

is still the unit square [0, 1]× [0, 1] in Euclidean space.

In Sub-competitions 2a, for each dataset, the training data consist of 90,000 location

coordinates and associated values, and the testing data are for 10,000 new location coordi-

nates. The participant team is asked to make predictions at the 10,000 locations

based on their choice of models or algorithms.

In Sub-competitions 2b, for each dataset, the training data consist of 900,000 location

coordinates and associated values, and the testing data are for 100,000 new location co-

ordinates. The participant team is asked to make predictions at the 100,000

locations based on their choice of models or algorithms.

3 Assessment

3.1 Assessment of methods for Sub-competition 1a

Mean Loss of Efficiency (MLOE) and Mean Misspecification of the Mean Square Error

(MMOM) [2] are used to assess the quality of the estimated model. MLOE characterizes

the average loss of prediction efficiency when the approximated model is used to predict

instead of the true model. MMOM characterizes the average misspecification of the mean

square error when calculated under the approximated model. Details of these two metrics

calculation can be found in the Appendix.

Assuming that we have K(1a) participant teams for Sub-competition 1a in the end, let
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Pki1, Pki2, k = 1, . . . , K(1a), i = 1, ..., 16, denote the MLOE and MMOM from team k for

dataset i, respectively. Then, for each dataset i and metric j = 1, 2, we sort Pkij, k =

1, . . . , K(1a) by the absolute values in ascending order and assign rank R
(1a)
kij to each team

(an averaged rank is used for ties).

The final score for team k in Sub-competition 1a is calculated as S
(1a)
k =

16∑
i=1

(
R

(1a)
ki1 +

R
(1a)
ki2

)
, and the final rank is assigned by sorting S

(1a)
k in ascending order.

3.2 Assessment of methods for Sub-competition 1b

The Root Mean Square Error (RMSE) is used to evaluate the prediction accuracy,

RMSE =

√√√√ 1

Ntest

Ntest∑
i=1

{
Ẑ(si)− Z(si)

}2
,

where Ẑ(si) and Z(si) are respectively the predicted and true realization values at the

prediction location si in the testing dataset, and Ntest is the total number of locations in

the testing dataset.

Assuming that we have K(1b) participant teams for Sub-competition 1b in the end, let

RMSE
(1b)
ki , k = 1, . . . , K(1b), i = 1, ..., 16, denote the RMSE from team k for dataset i. For

each dataset i, we sort RMSE
(1b)
ki , k = 1, . . . , K(1b) in ascending order and assign rank R

(1b)
ki

to each team (an averaged rank is used for ties).

The final score for team k in Sub-competition 1b is calculated as S
(1b)
k =

16∑
i=1

R
(1b)
ki , and

the final rank is assigned by sorting S
(1b)
k in ascending order.

3.3 Assessment of methods for Sub-competition 2a

The Root Mean Square Error (RMSE) is used to evaluate the prediction accuracy. Assum-

ing that we have K(2a) participant teams for Sub-competition 2a in the end, let RMSE
(2a)
ki ,

k = 1, . . . , K(2a), i = 1, 2, denote the RMSE from team k for all the 10,000 testing data

points in dataset i. For each dataset i, we sort RMSE
(2a)
ki , k = 1, . . . , K(2a) in ascending

order and assign rank R
(2a)
ki to each team (an averaged rank is used for ties).

4



The final score for team k in Sub-competition 2a is calculated as S
(2a)
k = R

(2a)
k1 +R

(2a)
k2 ,

and the final rank is assigned by sorting S
(2a)
k in ascending order.

3.4 Assessment of methods for Sub-competition 2b

The Root Mean Square Error (RMSE) is used to evaluate the prediction accuracy. Assum-

ing that we have K(2b) participant teams for Sub-competition 2b in the end, let RMSE
(2b)
ki ,

k = 1, . . . , K(2b), i = 1, 2, denote the RMSE from team k for all the 100,000 testing data

points in dataset i. For each dataset i, we sort RMSE
(2b)
ki , k = 1, . . . , K(2b) in ascending

order and assign rank R
(2b)
ki to each team (an averaged rank is used for ties).

The final score for team k in Sub-competition 2b is calculated as S
(2b)
k = R

(2b)
k1 +R

(2b)
k2 ,

and the final rank is assigned by sorting S
(2b)
k in ascending order.

4 Rules

• Teams from any background are welcome to participate. Participant teams can choose

to participate in one or more sub-competitions among Sub-competitions 1a, 1b, 2a,

and 2b. Separate rankings will be used for these four sub-competitions.

• In each sub-competition, all the required results need to be submitted before the

deadline to secure a rank.

• Each team is allowed and encouraged to have more than one submission if different

methods are used to solve the given problem.

• The execution time will not be used to rank the teams in this competition. It only

provides some insights into the method’s computational efficiency.

5 Results

The ranks of participant teams will be announced on our KAUST web page. One represen-

tative member from the top-ranked team in each sub-competition will be invited to KAUST
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to present their work in a workshop dedicated to this competition when the COVID-19 sit-

uation is better and travel is possible.

6 Getting Started

Please accept or reject the invitation for this competition by filling in the Registration

Google Form (https://bit.ly/3pGdyBS) by December 15, 2020. The datasets links will be

sent to each registered team via e-mail after the registration (but no earlier than November

23, 2020).

7 Timeline

All submissions should be received by 11:59pm (UTC±00:00) January 15, 2021.

8 Deliverables

Submission examples can be found at https://bit.ly/32JYObi. All required files should

be uploaded to Google drive via the Results Google Form (https://bit.ly/2KminAb).

The required files are:

• A text description file “TeamName-Description.txt”, showing the participating sub-

competitions and briefly describing the adopted methods. If the adopted methods

include priors, hyper-parameters, tuning parameters, etc., an explicit description of

their choices should be provided. If data preprocessing is used, it should also be

explained.

• Other files for each sub-competition described in the following sections.

8.1 Sub-competition 1a

• One “TeamName-1a-hardware.txt” text file is needed explaining the hardware plat-

form (CPU, memory, etc.) that is used for Sub-competition 1a.
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• One “TeamName-1a.csv” file (delimited by commas) is needed with 16 rows and

5 columns. One “TeamName-1a.csv” file (delimited by commas) is needed with 16

rows and 5 columns, and an additional header row. The header row is fixed as “sigma

squared, beta, nu, tau squared, time in seconds”. Then, row i reports the estimated

σ̂2, β̂, ν̂, τ̂ 2, and the execution time (in seconds), for dataset i. Each value should be

reported with six digits after the decimal point.

Sub-competition 1b

• One “TeamName-1b-hardware.txt” text file is needed indicating the hardware plat-

form (CPU, memory, etc.) that is used for Sub-competition 1b.

• One “TeamName-1b-time.csv” file (delimited by commas) with 16 rows and 1 column,

and an additional header row is needed. The header row is fixed as “time in seconds”.

Then, row i reports the total execution time (in seconds, with six digits after the

decimal point) of prediction at the 10,000 new locations for dataset i.

• Sixteen files are needed with names “TeamName-1b-1.csv”,. . ., “TeamName-1b-16.csv”

(delimited by commas), where file “TeamName-1b-i.csv” contains the prediction re-

sults for the dataset i. Each file has 10,000 rows and 3 columns, and an additional

header row. The header row is fixed as “x, y, predicted values”. Then, each row

reports the x and y coordinates of the prediction locations and the predicted values.

Each value should be reported with six digits after the decimal point.

8.2 Sub-competition 2a

• One “TeamName-2a-hardware.txt” text file is needed indicating the hardware plat-

form (CPU, memory, etc.) that is used for Sub-competition 2a.

• One “TeamName-2a-time.csv” (delimited by commas) file with 2 rows and 1 column,

and an additional header row is needed. The header row is fixed as “time in seconds”.

Then, row i reports the total execution time (in seconds, with six digits after the

decimal point) of prediction at the 10,000 new locations for dataset i.
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• Two files are needed with names “TeamName-2a-1.csv” and “TeamName-2a-2.csv”

(delimited by commas), where file “TeamName-2a-i.csv” contains the prediction re-

sults for the dataset i. Each file has 10,000 rows and 3 columns, and an additional

header row. The header row is fixed as “x, y, predicted values”. Then, each row

reports the x and y coordinates of the prediction locations and the predicted values.

Each value should be reported with six digits after the decimal point.

Sub-competition 2b

• One “TeamName-2b-hardware.txt” text file is needed indicating the hardware plat-

form (CPU, memory, etc.) that is used for Sub-competition 2b.

• One “TeamName-2b-time.csv” (delimited by commas) file with 2 rows and 1 column,

and an additional header row is needed. The header row is fixed as “time in seconds”.

Then, row i reports the total execution time (in seconds, with six digits after the

decimal point) of prediction at the 100,000 new locations for dataset i.

• Two files are needed with names “TeamName-2b-1.csv” and “TeamName-2b-2.csv”

(delimited by commas), where file “TeamName-2b-i.csv” contains the prediction re-

sults for the dataset i. Each file has 100,000 rows and 3 columns, and an additional

header row. The header row is fixed as “x, y, predicted values”. Then, each row

reports the x and y coordinates of the prediction locations and the predicted values.

Each value should be reported with six digits after the decimal point.

9 Contact

If you have any questions about this competition, you can contact us at kaustcompspat@gmail.com.
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Appendix

Let s̃1, . . . , s̃100 denote 100 predetermined, randomly-chosen locations in the unit square.

The MLOE and MMOM are calculated as follows,

MLOE =
1

100

100∑
j=1

LOE(s̃j), MMOM =
1

100

100∑
j=1

MOM(s̃j),

and

LOE(s̃j) =
Et[{Ẑa(s̃j)− Z(s̃j)}2]
Et[{Ẑt(s̃j)− Z(s̃j)}2]

− 1,

MOM(s̃i) =
Ea[{Ẑa(s̃j)− Z(s̃j)}2]
Et[{Ẑa(s̃j)− Z(s̃j)}2]

− 1,

where Ẑt(s̃j) and Ẑa(s̃j) are respectively kriging prediction at s̃j using the true and approx-

imated model (plugging in the true parameters and estimated parameters in the covariance

function), and Et and Ea are respectively the expectation using the true and approximated

model.

More specifically, let z denote the 90, 000-dimensional vector for the values in the train-

ing dataset; kt(s̃j) = covt
{
z, Z(s̃j)

}
, kt(s̃j) = covt

{
Z(s̃j), Z(s̃j)

}
, and Kt = covt(z, z)

using the true model; ka(s̃j) = cova
{
z, Z(s̃j)

}
, ka(s̃j) = cova

{
Z(s̃j), Z(s̃j)

}
, and Ka =

cova(z, z) using the approximated model. Then,

Et[{Ẑt(s̃j)− Z(s̃j)}2] = kt(s̃j)− kt(s̃j)
>K−1t kt(s̃j),

Ea[{Ẑa(s̃j)− Z(s̃j)}2] = ka(s̃j)− ka(s̃j)
>K−1a ka(s̃j),

Et[{Ẑa(s̃j)− Z(s̃j)}2] = kt(s̃j)− 2kt(s̃j)
>K−1a ka(s̃j) + ka(s̃j)

>K−1a KtK
−1
a ka(s̃j).
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