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Abstract I: Bayesian Ensemble Learning

Modern computing power has invigorated our ability to learn
high-dimensional, complex relationships from data; in particular, two
recent breakthroughs: deep learning and ensemble learning. In this
workshop, we explore the latter approach via Bayesian ensembles of
trees called Bayesian Additive Regression Trees (BART). The
Bayesian paradigm naturally provides a Markov chain Monte Carlo
stochastic exploration of the model space, uncertainty quantification,
and posterior inference. BART is one of the few modern approaches
which is able to exploit the powerful Bayesian conceptual toolkit.
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Motivating Example: Growth Charts
I The US Centers for Disease Control and Prevention (CDC) as

well as the World Health Organization have developed growth
charts for childhood development: height by age,
weight by age, body mass index by age and weight by height

I Here we will focus on height, yt ,
by age in months, t = 24, . . . , 215 (2 to 17 years old)

I The CDC uses the LMS method via natural cubic splines
(Cole and Green 1992 Statistics in Medicine)

I Three parameters estimated by penalized maximum likelihood
the Box-Cox power transformation, Rt ;
the mean, St ; and the coefficient of variation, Yt

zt =

{

−1+(yt/St )
Rt

RtYt
Rt ≠ 0

log(yt/St )

Yt
Rt = 0

}

∼ N(0, 1)

I But, this only uses part of the data: just males or just females
I What if we wanted to use all of the data?
I Or include more information like weight and/or race/ethnicity?
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What is Machine Learning?

I Artificial intelligence (AI) is a computer’s ability to perform
tasks that normally require human intelligence like driving a car

I Machine learning, or statistical learning, is a field within AI to
develop methods that learn predictions from training data
without being explicitly programmed to do so
(paraphrasing Arthur Samuel 1959)

I For example, you could directly model childhood growth chart
data based on principles of human auxology or you could
indirectly learn the growth curves from training data
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What is Machine Learning?

I Deep learning is the best currently-known machine learning
method of prediction where all of the covariates are of the same
type, i.e., they are all pixels or words or audio waves, etc.

I Ensemble learning is the best currently-known machine learning
method with respect to out-of-sample predictive performance for
tabular data where all of the covariates are of different types, i.e.,
age, sex, height, weight, etc.
A collection of machines (in our case trees) are fit simultaneously
that form the basis of an ensemble’s aggregate prediction with
superior performance to any single machine’s fit
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Why are Ensemble Learning predictions optimal?

I There is a trade-off between the bias and variance

I mean squared error = bias2 + variance

I Consider the spectrum of trade-offs

Linear regression is on the high bias/low variance end

Single-tree regression is on the low bias/high variance end

I Ensembles are in the middle: medium bias/medium variance

I BART is in the class of ensemble models which both
theoretically, and in practice, have excellent out-of-sample
predictive performance

Krogh & Solich 1997 Physical Review E
Baldi & Brunak 2001 “Bioinformatics: machine learning approach”
Kuhn & Johnson 2013 “Applied Predictive Modeling”
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What is Machine Learning Regression (MLR)?

I MLR is extensible, but for the moment consider the general
regression case of a continuous outcome with Normal errors

yi = - + f (xi) + &i where &i
iid
∼ N

(

0, 22)

I f is an unspecified function whose form is to be learned from
the data and xi is a vector of covariates for i = 1, . . . , T

I An MLR extension we will be discussing today and tomorrow

yi = - + f (xi) + s(xi)&i where &i
iid
∼ L&

I And f alone (or f and s) will be learned, but how?
I Ideally in a nonparametric manner without resorting to

precarious restrictive assumptions, i.e., we don’t need to assume
linearity nor pre-specify interactions
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What is Bayesian Additive Regression Trees?

I a supervised MLR with nice properties: automated learning of
the functional relationship and interactions without requiring
covariate transformations for continuous, binary, categorical and
time-to-event outcomes

I tree-based ensemble predictive model
I Bayesian nonparametric method with

robust defaults for the prior parameter settings
I computationally efficient posterior inference via MCMC

estimates naturally computed from summaries of the posterior
along with the quantification of their uncertainty

I seamless extension to variable selection in high dimensions
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BART and Bayesian nonparametric theory
I frequentist theoretical justification for BART’s performance:

asymptotically consistent with a near optimal learning rate

I the BART posterior distribution concentrates around the truth at
a near optimal minimax rate

I the default BART Branching penalty is near optimal:
P[Branch|tier] = a(1 + tier)−b

I the optimal BART Branching penalty is now known to be:
P[Branch|tier] = $tier where 0 < $ < 0.5

Number of leaves 1 2 3 4+
Prior probability 0.00 (1 − $)2 2$(1 − $)(1 − $2)2 . . .
$ = 0.25 0.00 0.56 0.33 0.11
a = 0.95, b = 2 0.05 0.55 0.27 0.13

Rockova & van der Pas 2019 Annals of Statistics
Rockova & Saha 2019 Proceedings of Machine Learning Research
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Selected BART references with URLs: Rob & Rodney
Overview Chipman, George and McCulloch 2010 AOAS

Sparapani, Spanbauer and McCulloch 2021 JSS
Survival Analysis Sparapani, Logan et al. 2016 Statistics in Medicine

Sparapani, Rein et al. 2020 Biostatistics
Sparapani, Logan et al. 2020 SMMR
Linero, Basak et al. 2021 Bayesian Analysis
Sparapani, Logan et al. 2023 Biometrics

Big Data Pratola, Chipman et al. 2014 JCGS
(Big T) Entezari, Craiu et al. 2017 Canadian J of Stat
Variable Selection Linero 2018 JASA
(Big V) Liu, Rockova 2023 JASA
Efficient MCMC Pratola 2016 Bayesian Analysis
Nonparametric Rockova and Saha 2019 PMLR
Theory Rockova and van der Pas 2020 AOS
Heteroskedastic Pratola, Chipman et al. 2020 JCGS
Propensity Scores Hahn, Murray et al. 2020 Bayesian Analysis
Monotonic Chipman, George et al. 2021 Bayesian Analysis

https://dx.doi.org/10.1214/09-AOAS285
https://doi.org/10.18637/jss.v097.i01
https://doi.org/10.1002/sim.6893
https://doi.org/10.1093/biostatistics/kxy032
https://doi.org/10.1177/0962280218822140
https://doi.org/10.1214/21-BA1285
https://doi.org/10.1111/biom.13857
https://doi.org/10.1080/10618600.2013.841584
https://doi.org/10.1002/cjs.11343
https://dx.doi.org/10.1080/01621459.2016.1264957
https://doi.org/10.1080/01621459.2021.1928514
https://dx.doi.org/10.1214/16-BA999
https://proceedings.mlr.press/v89/rockova19a.html
https://dx.doi.org/10.1214/19-AOS1879
https://dx.doi.org/10.1080/10618600.2019.1677243
https://doi.org/10.1214/19-BA1195
https://doi.org/10.1214/21-BA1259
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Bayesian Additive Regression Trees (BART)

Chipman, George & McCulloch 2010 Annals of Applied Stat

yi = - + f (xi) + &i &i
iid
∼ N

(

0, w2
i2

2)

f
prior
∼ BART (", #, N, +, -, 3)

f (xi) ≡
N
∑

h=1
g(xi;Th,Mh) N ∈ {50, 200, 500}

-hl |Th
prior
∼ N

(

0,
32

4N+2

)

leaves of Th

∈ Mh

22 prior
∼ ,.6−2 (.)
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An aside: MLR, BART and careless notation

I An important subtlety of MLR/BART notation that is
the most common pitfall of the literature/software

I Often authors make the mistake of
denoting f (x) when they really mean - + f (x)

I Rob and I try to avoid this but it is a very easy mistake to make
I Similarly, virtually all MLR/BART software returns - + f (x)

while not properly documenting it (we are guilty of this as well)
I This is already bad: yet even worse for marginal effects
I Perhaps, we should adopt a new notation like -(x) = - + f (x)

to make the proper distinction between f (x) and -(x)

I But, that doesn’t help with what has already been published
I So, for the most part, we stick to f (x) and - + f (x) accordingly
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Bayesian Additive Regression Trees (BART)
Logan, Sparapani, McCulloch & Laud 2020 SMMR
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The BART R package and trees

Sparapani, Spanbauer and McCulloch 2021
Journal of Statistical Software
R> write(post$treedraws$trees, "trees.txt")

R> tc <- textConnection(post$treedraws$tree)

R> trees <- read.table(file=tc, fill=TRUE, row.names=NULL, header=FALSE,

+ col.names=c("node", "var", "cut", "leaf"))

R> close(tc)

R> head(trees)
node var cut leaf

1 1000 200 1 NA

2 3 NA NA NA

3 1 0 66 -0.001032108

4 2 0 0 0.004806880

5 3 0 0 0.035709372

6 3 NA NA NA

x1

0.005

≤ c1,67

0.036

> c1,67



15/31

Friedman’s partial dependence function (FPD) and
Marginal Effects of Independent Variables

Suppose that we have a complex regression function, f (xY , xI),
where xY is a covariate subset of interest (at a fixed setting) and
xI are the complementary covariates

E [y |xY] ≡ - + fY (xY) fY (xY) is the marginal effect of xY
fY (xY) = ExI [ f (xY , xI)|xY]

≈ T−1
∑

i

f (xY , xiI) the partial dependence function

where xiI are the training values

fYm (xY) ≡ T−1
∑

i

fm (xY , xiI)

f̂Y (xY) ≡ S−1
∑

m

fYm (xY)

Friedman 2001 Annals of Statistics
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Friedman’s partial dependence function (FPD) and
Marginal Effects of Dependent Variables

I Consider our growth chart for height example
I Age and weight obviously co-vary
I t for age, u for sex, v for race/ethnicity and w for weight

ft , u (t, u) = Ev,w [ f (t, u, v, w)| t, u] assuming Independence
I To do this right, first consider the likely strong relationship

between age, sex and weight among children
E [w | t, u] = w̃ = f̃ (t, u)

I We can summarize the relationship with a BART model
wi = f̃ (ti , ui) + &̃i where f̃

prior
∼ BART

I A marginal effect more appropriate for dependent variables

ft , u (t, u) = Ev [ f (t, u, v, w̃)| t, u, w̃ = E[w | t, u]] assuming

= Ev
[

f (t, u, v, f̃ (t, u))| t, u
]

Dependence
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Returning to the real data example
I The CDC’s data is the US National Health and Nutrition

Examination Survey (NHANES) waves I-III
circa 1972 (I), 1978 (II), 1991 (III): n = 12677

I For simplicity, I used NHANES annual/continuous 1999-2000
I The data set is in the BART3 package: bmx

see growth1.R,growth2.R,growth3.R examples in demo
I 2-17 years (fractional age for months)
I each child only measured once
I height (cm) and weight (kg) collected
I Check MCMC convergence with max ̂X < 1.1 for 2:

Vehtari, Gelman et al. 2021 Bayesian Analysis
n %

Total 3435
Males 1768 51.5
Females 1667 48.5
White 800 23.3
Black 1035 30.1
Hispanic 1600 46.6
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MCMC Convergence fit$sigma: max ̂X = 1.08
Burn-in 1000, Thinning 10, Chains 8, Posterior 1000
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MCMC Convergence fit$sigma: Auto-correlation
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BART fit: M and F
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Marginal effect of age assuming weight is independent
N = 200, numcut = 100, BART3 demo/growth2.R
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Marginal effect of age: BART predictions for M and F
assuming weight is dependent, BART3 demo/growth3.R
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Heteroskedastic BART (HBART)
Pratola, Chipman, George & McCulloch 2020 JCGS

yi = - + f (xi) + s(xi)&i &i
iid
∼ N

(

0, w2
i2

2)

f
prior
∼ BART (", #, N, +, -, 3)

s2 prior
∼ HBART ("̃, #̃, ˜N, ,̃, .̃)

s2
(xi) ≡

˜N
∏

h=1
g(xi; ˜Th, ˜Mh) ˜N ≈ N/5

22
hl |

˜Th
prior
∼ ,.6−2 (.) leaves of ˜Th , = ,̃1/ ˜N

∈ ˜Mh . = 2
[

1 −
(

1 −
2
.̃

)1/ ˜N ]−1
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Marginal effect of age: HBART predictions for M
N = 300, ˜N = 60, numcut = 200
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Marginal effect of age: HBART predictions for F
assuming weight is dependent, hbart demo/height
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Marginal effect of age: HBART vs. CDC for M
assuming weight is dependent, hbart demo/height
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Marginal effect of age: HBART vs. CDC for F
assuming weight is dependent, hbart demo/height
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Marginal effects and computational efficiency

I In machine learning, Shapley values (SHAP) are another choice
for marginal effects (as opposed to FPD)

I However, SHAP are far more computationally intensive than FPD
I Therefore, we do not consider SHAP as a reasonable alternative
I Rather, we want a method faster than FPD that can be tedious
I In fact, we can speed up FPD with kernel sampling

Lundberg and Lee 2017; Janzing, Minorics and Blobaum 2020
I Kernel sampling can also speed up SHAP making it relevant
I The BART3 package has reliable S3 methods for FPD and

FPDK with kernel sampling: documentation is under construction
I And preliminary support for SHAP and SHAPK
I Today, I’m going to focus only on FPD and FPDK
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FPDK: FPD with kernel sampling

FPD

fYLm
(xY) ≡ T−1

∑

i

fm (xY , xiI) xiI are the training values

f̂YL (xY) ≡ S−1
∑

m

fYLm
(xY)

FPD with kernel sampling

fYQm
(xY) ≡ Q−1

∑

k

fm (xY , xkI) xkI are random draws of the training

f̂YQ (xY) ≡ S−1
∑

m

fYQm
(xY)
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FPDK and the kernel sampling empirical variance

I It is clear that E
[

f̂YL (xY)
]

≈ E
[

f̂YQ (xY)
]

I However, it is also clear that the variances are not equal

V
[

f̂YQ (xY)|y
]

=V
[

E
[

f̂YQ (xY)| f̂YL (xY), y
]

|y
]

+ E
[

V
[

f̂YQ (xY)| f̂YL (xY), y
]

|y
]

=V
[

f̂YL (xY)|y
]

+ E
[

Q−1V
[

f (xY , xkI)| f̂YL (xY), y
]

|y
]

≈V
[

f̂YL (xY)|y
]

+ Q−1E
[

s2
YQ (xY)

|y
]

where s2
YQ (xY)

= Q−1
∑

k

( f (xY , xkI) − f̂YQ (xY))
2
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FPDK and the kernel sampling empirical variance

V
[

f̂YQ (xY)|y
]

≈V
[

f̂YL (xY)|y
]

+ Q−1E
[

s2
YQ (xY)

|y
]

I The first term V
[

f̂YL (xY)|y
]

is the target variance of the
calculation we want to avoid

I And the second term can be estimated from the posterior as
̂s2

YQ (xY) = S−1 ∑

m s2
YQm (xY)

I Therefore, we can empirically estimate the variance like so
V

[

f̂YL (xY)|y
]

≈ V
[

f̂YQ (xY)|y
]

− Q−1
̂s2

YQ (xY)

I So, we generate the posterior for the kernel sampling estimator as

fYLm
(xY) ≈ f̂YQ (xY) +

[

fYQm
(xY) − f̂YQ (xY)

]

√

V[ f̂YL (xY) |y]
V[ f̂YQ (xY) |y]


