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Outline

I Motivation: a clinical application in chronically ill children
potentially compounded by malnutrition

I What is monotonic BART (mBART)

I Nonparametric outlier detection and monotonic advantages

I Nonparametric marginal effect estimation

I Returning to the real data example
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Chronically ill children and potential height outliers
I This data is from the electronic health records (EHR)

of a large children’s health care system
I Chronically ill children are often at high risk for malnutrition
I Typically this is assessed by comparison to

Centers for Disease Control (CDC) growth chart benchmarks
I CDC inputs are age, gender, height and weight
I Age and gender are extremely reliable
I However, height and weight are prone to outliers and

there is practically NO quality control for these measures
i.e., the ground truth of height outliers is largely unknown

I There are about an order of magnitude more height (3%)
than weight outliers (0.2%) per measurement
(Phan et al. 2020 Scientific Reports)

I Determining malnourishment requires height outlier detection
I Furthermore, this method should be robust to weight outliers

that are harder to identify but thankfully less prevalent
I Proposed EHR height outlier removal methods are either too

simplistic or too complex to implement (such as Phan et al.)
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https://www.cdc.gov/growthcharts
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Motivating Example: Growth Chart Outliers
I The US Centers for Disease Control and Prevention (CDC) as

well as the World Health Organization (WHO) have developed
growth charts for childhood development: height by age,
weight by age, body mass index by age and weight by height

I Here we will focus on height, yt ,
by age in months, t = 24, . . . , 215 (2 to 17 years old)

I The CDC uses the LMS method via natural cubic splines
(Cole and Green 1992 Statistics in Medicine)

I Three parameters estimated by penalized maximum likelihood
the Box-Cox power transformation, Rt ;
the mean, St ; and the coefficient of variation, Yt

zt =

{

−1+(yt/St )
Rt

RtYt
Rt ≠ 0

log(yt/St )

Yt
Rt = 0

}

∼ N(0, 1)

I CDC/WHO guidelines say values of zt < −6 or zt > 6 are
outliers but this will catch only the most extreme outliers

I Regardless of the exact cutoff, this outlier method is called
Standard Deviation Scores (SDS), i.e., Height SDS
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Monotonic example: increasing in x1 and x2
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Monotonic BART (mBART)

Chipman et al. 2021 Bayesian Analysis

I f
prior
∼ mBART

I A function f is monotone with respect to x j if f satisfies
f (. . . , x j−1, x j + �x, x j+1, . . . ) ≥ f (. . . , x j−1, x j , x j+1, . . . )
for all �x > 0 (increasing/nondecreasing) or
for all �x < 0 (decreasing/nonincreasing)

I Constraint Conditions for Tree Monotonicity
A tree function g(x;T,M) will be monotone in coordinate x j

if the leaf value of each of its terminal node regions is
(a) not greater than the minimum level of all of its
above-neighbor regions with respect to x j and
(b) not less than the maximum level of all of its
below-neighbor regions with respect to x j
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Monotonic BART (mBART)

Chipman et al. 2021 Bayesian Analysis

I The leaf prior for BART - j |T
prior
∼ N

(

0, 22
-

)

I Consider the simplest case of two monotonic leaves in mBART
(relying on the results of Azzalini 1985 Scand J Stat)

[

-1

-2

]

prior
∼ N2

(

®02, c222
- O2

)

I(-1 < -2) where c2 =
0

0 − 1
≈ 1.47

Equivalent to skew Normal marginals where V [-1] = V [-2] = 22
-

-1
prior
∼ 5

(

-1

c2-

)

�
(

−-1

c2-

)

E [-1] =
−2-
√
0 − 1

-2
prior
∼ 5

(

-2

c2-

)

�
(

-2

c2-

)

E [-2] =
+2-
√
0 − 1



8/25

BART vs. mBART priors

Default BART prior settings
" = 0.95, # = 2

Number of leaves 1 2 3 4+
Prior probability 0.05 0.55 0.27 0.13

Default mBART prior settings
" = 0.25, # = 0.8

Number of leaves
Comparable with BART due to a different sampling approach
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Nonparametric outlier detection
I Monotonicity provides additional robustness to outliers

since f can’t just go up before an outlier and back down after
(or vice versa)

I We have population predictions of the form
ŷi j = E

[

yi j
]

= - + f̂ (xi j) where j = 1, . . . , ni
(recall, - is just a constant roughly centering the population)

I But these expectations are biased except for the average child

I We need to adjust these up or down for a given subject

I So let mi = medianj (yi j − ŷi j)
(median rather than mean to be robust to outliers)

I Now, we make personalized predictions ỹi j = mi + ŷi j
I We define the relative error of these as di j = (yi j − ỹi j)/ỹi j
I Outliers are defined as |di j | > % where % can be determined

from the Receiver Operating Characteristic (ROC) curve

I And the discriminating performance of the method is assessed
by the area under the ROC curve
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Returning to the real data example

I Constructed two independent cohorts of chronically ill children
I 2-8 years old
I measured at least every 120 days on average
I followed for at least 2 years

I Training cohort: 1376 children with height outliers unknown
39491 measurements: 28.7/child on average

I Validation cohort: 318 children
7378 measurements: 23.2/child on average
manually reviewed to determine height outliers
however, the ground truth is fallible
i.e., retrospective: we can’t just re-measure the child’s height

I Heights in the Training cohort fit with mBART to
age, gender, race/ethnicity and weight
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Returning to the real data example

I Outlier detection conducted for the Validation cohort

I The area under the Receiver Operating Characteristic (ROC)
curve was excellent: 0.841

I By comparison, if you use the height SDS by age growth
chart, the area is only 0.776

I Based on ROC curve, two relative error cutoffs considered
Aggressive, 0.075; and Conservative, 0.085
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Real data summary
Training Validation

1376 318

Children n (%) n (%)

Female 594 (43.2%) 132 (41.5%)

White 783 (56.9%) 189 (59.4%)
Black 313 (22.7%) 66 (20.8%)
Other 280 (20.3%) 63 (19.8%)

Children with outliers Unk. 101 (31.8%)

Measurements m m

Height (cm) 39491 7378

Mean (SD) Mean (SD)

Measurements/child 28.7 23.2
First visit age 2 86.4 (8.8) 84.5 (6.6)
Last visit age 5 111.3 (8.4) 109.5 (9.4)

mBART X2 82.2% 75.3%
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Receiver Operating Characteristic curve (AUC):
mBART (0.841) vs. SDS (0.776)
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Aggressive cutoff 0.075
I B: mBART outlier detection

I C: clinical review ground truth

I Outlier: 0 (False), 1 (True)

B=0 B=1

C=0 TN=172 FP=45 M=217
C=1 FN=29 TP=72 Q=101

N=201 P=117 T=318

Sensitivity or Recall = P[H = 1|I = 1] =
ZV

W
=

72

101
= 0.713

Specificity = P[H = 0|I = 0] =
ZT

S
=

172

217
= 0.793

PPV or Precision = P[I = 1|H = 1] =
ZV

V
=

72

117
= 0.615

NPV = P[I = 0|H = 0] =
ZT

T
=

172

201
= 0.856
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Conservative cutoff 0.085
I B: mBART outlier detection

I C: clinical review ground truth

I Outlier: 0 (False), 1 (True)

B=0 B=1

C=0 TN=186 FP=31 M=217
C=1 FN=37 TP=64 Q=101

N=223 P=95 T=318

Sensitivity or Recall = P[H = 1|I = 1] =
ZV

W
=

64

101
= 0.634

Specificity = P[H = 0|I = 0] =
ZT

S
=

186

217
= 0.857

PPV or Precision = P[I = 1|H = 1] =
ZV

V
=

64

95
= 0.674

NPV = P[I = 0|H = 0] =
ZT

T
=

186

223
= 0.834
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Aggressive cutoff: targeted smoothing BART
with monotonic weight

Starling et al. Annals of Applied Statistics 2020
I B: mBART outlier detection
I C: clinical review ground truth
I Outlier: 0 (False), 1 (True)

B=0 B=1

C=0 TN=165 FP=52 M=217
C=1 FN=27 TP=74 Q=101

N=192 P=126 T=318

Sensitivity or Recall = P[H = 1|I = 1] =
ZV

W
=

74

101
= 0.732

Specificity = P[H = 0|I = 0] =
ZT

S
=

165

217
= 0.760

PPV or Precision = P[I = 1|H = 1] =
ZV

V
=

74

126
= 0.587

NPV = P[I = 0|H = 0] =
ZT

T
=

165

192
= 0.859
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Aggressive cutoff: females only
I B: mBART outlier detection

I C: clinical review ground truth

I Outlier: 0 (False), 1 (True)

B=0 B=1

C=0 TN=70 FP=20 M=90
C=1 FN=11 TP=31 Q=42

N=81 P=51 T=132

Sensitivity or Recall = P[H = 1|I = 1] =
ZV

W
=

31

42
= 0.738

Specificity = P[H = 0|I = 0] =
ZT

S
=

70

90
= 0.778

PPV or Precision = P[I = 1|H = 1] =
ZV

V
=

31

51
= 0.608

NPV = P[I = 0|H = 0] =
ZT

T
=

70

81
= 0.864
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Aggressive cutoff: non-whites only
I B: mBART outlier detection

I C: clinical review ground truth

I Outlier: 0 (False), 1 (True)

B=0 B=1

C=0 TN=60 FP=19 M=79
C=1 FN=11 TP=39 Q=50

N=71 P=58 T=129

Sensitivity or Recall = P[H = 1|I = 1] =
ZV

W
=

39

50
= 0.780

Specificity = P[H = 0|I = 0] =
ZT

S
=

60

79
= 0.759

PPV or Precision = P[I = 1|H = 1] =
ZV

V
=

39

58
= 0.672

NPV = P[I = 0|H = 0] =
ZT

T
=

60

71
= 0.845
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True Positives
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False Positives
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False Negatives
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Conclusions

I We constructed our new outlier detection methodology based
on nonparametric machine learning via monotonic BART

I This automated method’s performance was deemed to be
adequate via an indpendent validation cohort

I Modern methodology leads to a simply-tuned single rule as
opposed to complex simultaneous tuning of multiple rules that
have been proposed based on classic methods

I For EHR heights/weights, the ground truth is unknown
prospective corrections are rarely performed and
retrospective attempts to identify outliers manually are fallible
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True Positives
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False Positives

2 3 4 5 6 7

30
35

40
45

50
55

60

(a) Sex M, Race W
Age (yr)

H
ei

gh
t (

in
)

2.5
10
25
50
75
90

97.5

Observed
Predicted
Outlier

20 30 40 50 60 70

30
35

40
45

50
55

60

(b) Sex M, Race W
Weight (lb)

H
ei

gh
t (

in
)

2 3 4 5 6 7

30
35

40
45

50
55

60

(c) Sex M, Race W
Age (yr)

H
ei

gh
t (

in
)

2.5
10
25
50
75
90

97.5

Observed
Predicted
Outlier

20 30 40 50 60 70

30
35

40
45

50
55

60

(d) Sex M, Race W
Weight (lb)

H
ei

gh
t (

in
)



25/25

False Negatives
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