
1/32

BART, R and Operating Systems (OS)

I In association with our collaborators, we have created several
R packages for BART

I GNU R was started by Ross Ihaka and Robert Gentelman as a
successor to Bell Labs S that was only available on UNIX

I 1993: R first released for Apple MacOS (classic), but ports to
Microsoft Windows, UNIX and GNU Linux soon followed

I R does its best to treat the three modern platforms equally:
Windows, UNIX/Linux and Apple macOS (OS X)

I But, there are really just two OS types as far as R is concerned

I R> .Platform$OS.type
"unix" for UNIX/Linux/macOS and "windows" for Windows

I However, there are some fundamental differences that
R cannot address: in particular, multi-threading

I We support BART on all R platforms but Windows is the
most challenging: we have workarounds for some issues

2/32

BART software supporting S3 predict with URLs
R packages

Debut Language Stable (CRAN) Development Multi-threading

2006 C++ BayesTree None None

2013 Java bartMachine Java

2014 C++ dbarts forking

2014 C++ MPI BART source code MPI

2017 C++ BART 2.9.4* BART3* OpenMP/forking
2019 C++ rbart 1.0* hbart* OpenMP
2019 C++ None mxBART* OpenMP/forking
2021 C++ None mBART* OpenMP/forking
2021 C++ nftbart 1.6* nftbart* OpenMP

*Descendents of MPI BART

Development on github.com by users rsparapa (me),
cspanbauer (Charley Spanbauer) and remcc (Rob McCulloch)
Special thanks to Rob (BART), Matt Pratola for rbart
Hugh Chipman, Robert Gramacy, the R Core team,
the Rcpp Core team and so many others in the FOSS community!

https://cran.r-project.org/package=BayesTree
https://cran.r-project.org/web/packages/BART
https://github.com/rsparapa/bnptools
https://cran.r-project.org/web/packages/rbart
https://github.com/rsparapa/bnptools
https://github.com/rsparapa/bnptools
https://github.com/remcc/mBART_shlib
https://cran.r-project.org/web/packages/nftbart
https://github.com/rsparapa/bnptools
github.com

3/32

BART software features: descendents of MPI BART
Stable BART nftbart rbart
Development BART3 nftbart hbart mBART
github.com user rsparapa remcc

predict function Yes Yes Yes BART
heteroskedastic No Yes Yes No
monotonic No No No Yes
continuous Yes Yes Yes Yes
binary/categorical Yes No No No

right censoring Yes Yes No No
left censoring No Yes No No
competing risks Yes No No No
recurrent events Yes No No No

sparse prior Yes No No No
marginal effects BART3 Yes No No
missing imputation Yes Yes No No
advanced tree proposals No Yes Yes No
nonparametric error No Yes No No
C++ header-only BART3 No hbart No

4/32

Skeleton of the BART/BART3 R package
Directory File Example Description

root configure To dectect OpenMP for "unix"
DESCRIPTION Dependency on Rcpp and others

R gbart.R Generalized BART function
wbart.R Weighted BART function
predict.pbart.R predict for "pbart"/probit type
predict.wbart.R predict for "wbart"/continuous type

data lung.rda Advanced lung cancer data
demo boston.R Boston housing demo

lung.surv.bart.R Advanced lung cancer demo
man gbart.Rd Help pages

wbart.Rd

predict.pbart.Rd

predict.wbart.Rd

src Makevars Hard-wired settings for "windows"
Makevars.in configure OpenMP template

for "unix" Makevars file

5/32

BART and multi-threading

I Multi-threading is supported by software frameworks such as
OpenMP and the Message Passing Interface (MPI)

I MPI can be employed for both simple multi-threading and for
distributed computing, e.g., MPI software initially written for
a single system could be extended to operate on multiple
systems as computational needs expand

I For MPI, BART software was re-written with C++ objects
simple to modify/maintain for distributed computing:
we call this the MPI BART code (Pratola et al. 2014, JCGS)

I The BART/BART3 and rbart/hbart/nftbart packages are
all descendants of MPI BART and its programmer-friendly
objects, but we have moved on from MPI mainly to OpenMP

I For a brief primer on R, BART and multi-threading
go to slide 27

6/32

Testing multi-threading after installing BART/BART3

I parallel::detectCores

I Returns the number of threads that the computer is capable of

I The number of threads rather than the number of cores since
they are not necessarily one-to-one

I For example, on my desktop, I have 1 CPU with 6 cores and
detectCores returns 12

I BART::mc.cores.openmp/BART3::mc.cores.openmp

I Returns whether OpenMP has been detected
>0 (Yes) vs. 0 (No)

7/32

BART and multi-threading
I Multi-threading is supported in two ways

1) via the parallel package and 2) via OpenMP
I OpenMP takes advantage of modern hardware by performing

multi-threading on single machines which often have multiple
CPUs each with multiple cores

I BART/BART3 only use OpenMP for parallelizing predict

function calculations
I rbart/hbart/nftbart use OpenMP for fitting and predicting
I OpenMP support is detected at package installation

by the configure script on UNIX/Linux/macOS that
defines a C pre-processor macro called OPENMP if available

I But a configure script can’t run on Windows
I BART/BART3/nftbart hard-wired for Windows OpenMP
I In src/Makevars, Windows compiler switches for OpenMP

(add to any source package needing OpenMP on Windows)

PKG_CXXFLAGS = -fopenmp

PKG_LIBS = -fopenmp

8/32

Installation resources for R and R packages: BEWARE

I The Comprehensive R Archive Network (CRAN)
http://cran.r-project.org has R binaries for Windows,
macOS and many flavors of Linux

I CRAN is a wealth of manuals, advice, FAQs, etc.

I Avoid the pitfalls: just do it the “CRAN way”!

I Do NOT use package managers unless CRAN approves

I Extra Packages for Enterprise Linux (EPEL) is approved for
Red Hat-flavored Linux

I And, so are Debian-flavored packages at debian.org

I But, EPEL and Debian are exceptions

I For example, on macOS, the Homebrew and conda package
managers are NOT approved

I Only use CRAN binaries and/or
build with CRAN approved tool chains!

I Be safe, not sorry

http://cran.r-project.org

9/32

Installation resources for R and R packages

I Windows Rtools 4.3 https://cran.r-project.org/bin/

windows/Rtools/rtools43/rtools.html

mainly, the GNU Compiler Collection (GCC) v. 12

I macOS tools: https://mac.r-project.org/tools

for BART, we need Xcode installed from the App Store
and the command-line tools which are installed as follows
terminal$ sudo xcode-select --install

with OpenMP at https://mac.r-project.org/openmp

I remotes package
https://cran.r-project.org/package=remotes

I Rcpp package
https://cran.r-project.org/package=Rcpp

https://cran.r-project.org/bin/windows/Rtools/rtools43/rtools.html
https://cran.r-project.org/bin/windows/Rtools/rtools43/rtools.html
https://mac.r-project.org/tools
https://mac.r-project.org/openmp
https://cran.r-project.org/package=remotes
https://cran.r-project.org/package=Rcpp

10/32

Installing R packages from source

I Installing R packages from source needs a compiler tool chain
that support Rcpp and various BART packages
therefore, we need ISO standard C++11 (2011) or higher

I CRAN now defaults to ISO standard C++17 (2017)
with C++11 or ISO standard C++14 (2014) optional

I So a CRAN compatible C++ compiler is needed
there are two common flavors used by CRAN
the GNU Compiler Collection (GCC) and LLVM Clang
Clang maintains compatibility with GCC
(but a Fortran compiler is NOT needed for BART)

I For Windows, CRAN R Tools provide GCC with OpenMP
https://cran.r-project.org/bin/windows/Rtools/

rtools43/rtools.html

I For macOS, rely on Apple Xcode’s Clang
but you have to install Clang’s OpenMP library from CRAN
for more details see next slide

https://cran.r-project.org/bin/windows/Rtools/rtools43/rtools.html
https://cran.r-project.org/bin/windows/Rtools/rtools43/rtools.html

11/32

Auto-installing OpenMP on macOS with configure
I Get the tarball from https://mac.r-project.org/openmp

I The latest version of the OpenMP library (as of this writing)
is 14.0.6 for Xcode 14.3 (Apple clang 14.0.3)

I Manually install it from the ∼/Downloads folder compressed

$ sudo bash

$ tar fvxz openmp-14.0.6-darwin20-Release.tar.gz -C /

or uncompressed
$ tar fvx openmp-14.0.6-darwin20-Release.tar -C /

I For example, install nftbart
$ R CMD INSTALL nftbart 1.6.tar.gz

I Then you should see the following if OpenMP is auto-detected

checking for clang++ ... option to support OpenMP...

-Xlinker -lomp -Xclang -fopenmp

I Due to -lomp which is needed for linking only, you will see a
harmless warning when compiling (linking is fine too)
clang: warning: -lomp: ’linker’ input unused

[-Wunused-command-line-argument]

https://mac.r-project.org/openmp

12/32

Installing R packages

I The variable .Library contains the location of the default
directory for R packages

I R> .Library

I Depending on the OS, this directory may not be writeable

I To create an alternative library for your R packages that you
can edit, use the .libPaths() function

I R> .libPaths(’∼/RLIB’)

I But you need to create the directories obviously before
installing

I terminal$ mkdir ∼/RLIB

I Similarly, you can find where any R package is installed with
system.file()

I R> system.file(package=’BART’)

I For example, to find the demo directory

I R> system.file(’demo’, package=’BART’)

13/32

Installing R packages with CRAN

I CRAN has 19124 R add-on packages as of this writing
(01/28/23)
there will be many more by the time you read this

I To install an R package from CRAN
The two most reliable, and likely complete, mirrors I use
http://lib.stat.cmu.edu/R/CRAN at Carnegie-Mellon and
http://cran.wustl.edu at Washington University in St.L.
N.B. http NOT https

R> options(repos=c(CRAN="http://lib.stat.cmu.edu/R/CRAN"))

R> install.packages("remotes", dependencies=TRUE)

R> install.packages("Rcpp", dependencies=TRUE)

R> install.packages("BART", dependencies=TRUE)

R> install.packages("nftbart", dependencies=TRUE)

To install all CRAN packages (takes hours: we run this over-night)
R> install.packages(available.packages()[, 1])

Some of them will fail for missing system dependencies like device
drivers, required software, etc., but R will try to install them all

http://lib.stat.cmu.edu/R/CRAN
http://cran.wustl.edu

14/32

Installing R packages with Bioconductor

I The Bioconductor Project produces R packages for
bioinformatics: http://bioconductor.org

I Bioconductor versions are tied to specific R versions
R> tools:::.BioC version associated with R version()

for example, the return value is "3.12" with R 4.0.4

I To install the package named limma (and R or Bioconductor
package dependencies, if any)
R> source("http://bioconductor.org/biocLite.R")

R> biocLite("limma")

I To install all Bioconductor packages (takes a while):
R> biocLite(all group())

http://bioconductor.org

15/32

build and INSTALL R packages: command line
I For macOS/Linux, use bash

I For Windows, use CMD.EXE

I Build and install R packages from the command line: $
I This works with your own R packages or those of others
I If it is your own in the sub-directory PACKAGE, then build it:

$ R CMD build PACKAGE

I For others, download the archive of source files
either a gzipped TARFILE ending in .tar.gz or .tgz
or a PKWARE/Info-ZIP ZIPFILE ending in .zip

I Unpack it: $ tar xzf TARFILE or $ unzip ZIPFILE which
should create the PACKAGE sub-directory

I Build the package: $ R CMD build PACKAGE

I Typically the vignettes take a long time or may crash the build
$ R CMD build --no-build-vignettes PACKAGE

I So now you have created PACKAGE VERSION.tar.gz

I Install it: $ R CMD INSTALL PACKAGE VERSION.tar.gz

I And you can remove it later: $ R CMD REMOVE PACKAGE

16/32

build and INSTALL R packages: remotes package

I You can build and install R packages from anywhere on the
internet with the remotes package

I For example, former CRAN packages that have been Archived:
https://cran.r-project.org/src/contrib/Archive

I These can be installed with the install url function

I Or R packages on https://github.com

I These can be installed with the install github function

I However, R 3.6.2 or higher appears to be necessary

I For example, the BART3 package (beta BART) at https:
//github.com/rsparapa/bnptools/tree/master/BART3

I R> install github("rsparapa/bnptools/BART3")

I Or the mBART package, monotonic BART, at https:
//github.com/remcc/mBART_shlib/tree/main/mBART

I R> install github("remcc/mBART shlib/mBART")

I N.B. installing from the command line is much faster

https://cran.r-project.org/src/contrib/Archive
https://github.com
https://github.com/rsparapa/bnptools/tree/master/BART3
https://github.com/rsparapa/bnptools/tree/master/BART3
https://github.com/remcc/mBART_shlib/tree/main/mBART
https://github.com/remcc/mBART_shlib/tree/main/mBART

17/32

build and INSTALL R packages with git

I This is much faster than remotes::install github

I To install either R package: BART3 or mBART
first, you have to “clone” the repository

$ mkdir DIR

$ cd DIR

$ git clone https://github.com/rsparapa/bnptools.git

$ cd bnptools ## where BART3 is a sub-directory

$ R CMD build --no-build-vignettes BART3

$ R CMD INSTALL BART3 VERSION.tar.gz

$ cd ..

$ git clone https://github.com/remcc/mBART shlib.git

$ cd mBART shlib ## where mBART is a sub-directory

$ R CMD build --no-build-vignettes mBART

$ R CMD INSTALL mBART VERSION.tar.gz

18/32

Intelligent development environments (IDE) for R/C++

I To work with BART, you need an IDE for R

I And, if you need to tinker with BART, you also need C++

I RStudio is a popular IDE, but it ONLY does R

I And, it requires that R be built with --enable-R-shlib

I But, that will prevent the GNU debugger, gdb, from working

I The debugger is great technology that we refuse to give up!

19/32

Emacs and ESS for R/C++

I 1975: Emacs “Editor MACroS” by Richard Stallman (RMS)
intelligent development environment (IDE) for programmers

I 1980: US law changes to recognize software Copyright

I 1983: UniPress starts selling “Gosling version” of Emacs
RMS founds the GNU project
GNU stands for “GNU is Not UNIX”
“a complete UNIX-compatible software system”

I 1984: RMS releases GNU Emacs as free software
re-written in C with Elisp (Emacs Lisp) for modes

I 1986: emacs FORTRAN-mode: IDE for FORTRAN

I 1989: the GNU General Public License (GPL) for free software

I 1994: Anthony Rossini releases ESS (GPL) containing
Emacs modes for statistical software like ESS[R]

20/32

Installing Emacs/ESS for your R IDE
I Vincent Goulet’s Modified Emacs installable binaries for both

Windows and macOS with ESS and other goodies
many modes for programming like C/C++ and markup
such as AUCTeX: a LaTeX support mode
English, French, German and Spanish dictionaries for Hunspell
http://hunspell.github.io

I For Windows:
https://vigou3.gitlab.io/emacs-modified-windows

I For macOS:
https://vigou3.gitlab.io/emacs-modified-macos

I Check ESS is working with M-x ess-version

I For macOS, the Modified Emacs app is crash-prone
I Homebrew is a macOS and Linux package manager

but its compiler tool chain is NOT compatible with R
I However, you can install the very stable Homebrew Emacs

binaries without the compiler baggage
I So install Homebrew Emacs and clone the Modified setup

http://hunspell.github.io
https://vigou3.gitlab.io/emacs-modified-windows
https://vigou3.gitlab.io/emacs-modified-macos

21/32

Installing Emacs/ESS for macOS

0. macOS 13 (Ventura): in “System Settings” under “Privacy &
Security” give Terminal permission for “App Management”

1. Install latest macOS Modified binary from
https://vigou3.gitlab.io/emacs-modified-macos

Launch it and run M-x ess-version

Rename it to /Applications/EmacsMod.app

Currently, this is Emacs 28.1 (as of this writing)

2. Install the Homebrew emacs binary from
https://github.com/railwaycat/

homebrew-emacsmacport/releases

Download emacs-EMACSv-mac-RELv-OSv.zip
e.g., EMACSv=28.2, RELv=9.1, OSv=12.6
Emacs 28.2 is the latest version (as of this writing)
OS 12.6 is a Monterrey update from September 2022
Copy Emacs.app with the Terminal
$ cp -r ∼/Downloads/Emacs.app /Applications

Launch Emacs and then exit before proceeding to next step

https://vigou3.gitlab.io/emacs-modified-macos
https://github.com/railwaycat/homebrew-emacsmacport/releases
https://github.com/railwaycat/homebrew-emacsmacport/releases

22/32

Installing Emacs/ESS for macOS

3. Create the site-lisp directory from the Terminal

$ sudo bash ## start a shell as superuser

$ MOD=/Applications/EmacsMod.app/Contents/Resources/lisp

$ HB=/opt/homebrew/share/emacs/site-lisp

$ mkdir -p $HB ## your new site-lisp library

$ cp -r ${MOD}/* $HB ## copy the goodies

$ chown -R root:wheel $HB

$ chmod -R 775 $HB

$ exit ## exit from superuser shell

4. Set Apple Human Interface Guidelines Apple-key definitions
copy Command-c, cut Command-x, paste Command-v, etc.
Copy emacs-macos.el to your user emacs settings ∼/.emacs

$ mkdir DIR

$ cd DIR

$ git clone https://github.com/rsparapa/bnptools.git

$ cp bnptools/emacs-macos.el ∼/.emacs

23/32

Installing ESS with git

Regardless of your platform, you may need to install ESS from
source to get the latest version/bug-fixes/etc.

1. Clone ESS with git

$ git clone https://github.com/emacs-ess/ESS.git

$ cd ESS

2. Edit the file Makeconf to match your emacs setup

3. Build ESS
$ nohup make all >& all.txt &

4. And install it
$ make install

24/32

Welcome to Emacs

I Modifier Keys: Emacs documentation looks like this

I C-KEY means hold down the Control key while pressing KEY

I For example, C-x means hold down Control while pressing x

I M-KEY means hold down the Meta key while pressing KEY

I On PC, the Meta key is usually the Alt key

I On Mac, the Meta key is Option (from emacs-macos.el)
In XQuartz Preferences: “Option keys send Alt L and Alt R”

I Or, you can press Esc, release, and then press KEY

I Execute an emacs command: M-x COMMAND which is followed
by pressing Enter

I Check ESS is working with M-x ess-version

I For example, M-x man to bring up a man page
or M-x info the directory of info pages

I S-KEY means hold down the Shift key while pressing KEY

25/32

Common Emacs Shortcuts

I C-h is the help key and F1 is its alias

I But you have to get your laptop to generate an F1

on PC/Mac, check your keyboard settings for function keys

I For example, C-h k describes the next key pressed

I Try C-h k F1 k

I Interrupt command: C-g

I Save the file: C-x C-s

I Quit emacs: C-x C-c

I C-x C-f is open a file or a directory

I F2 is refresh (ESS)

I F8 is go to *shell* buffer (ESS)

I M-w is copy

I C-y is paste

I C-w and Delete are cut

26/32

Common Emacs Shortcuts

I C-c comments a region (an area of text selected)

I C-u is the prefix command so C-u C-c uncomments a region

I C-x 2 splits the buffer top over bottom

I C-x 1 unsplits the buffer

I C-x 3 splits the buffer left and right

I C-s starts a forward search

I Repeating C-s searches for the same string again

I C-r starts a reverse search

I C-u C-s starts a forward regular expression search

I See Search:Regexps entry of emacs manual : M-x info

27/32

Multi-threading and symmetric multi-processing
I Multi-threading and symmetric multi-processing are

advanced technology that are surprisingly easy to use today

I Today, most off-the-shelf hardware available features 1 to 4
CPUs each of which is capable of multi-threading

I For example, on my desktop, I have 1 CPU with 6 cores
capable of 12 threads (2 threads/core)

I Multi-threading emerged quite early in the digital computer
era with the groundwork laid way back in the 1960s

I In 1962, Burroughs released the D825 which was the first
commercial hardware capable of symmetric multiprocessing
(SMP) with CPUs

I In 1967, Gene Amdahl derived the theoretical limits for
multi-threading which came to be known as Amdahl’s law

I If H is the number of CPUs and b is the fraction of work that
can’t be parallelized, then the gain due to multi-threading is
((1 − b)/H + b)−1

28/32

Amdahl’s law: ((1 − b)/H + b)−1 where b ∈ {0.025, 0.1}

1 2 5 10 20 50

0
5

10
15

20
25

30

B: number of CPU

G
ai

n

0.025

0.1

29/32

Multi-threading with parallel package

I The mcparallel function uses forking to facilitate
multi-threading (forking is NOT available on Windows)

I Fork is an operation where a process creates a copy of itself

I A forked R child process has memory address pointers to all of
the objects known to the parent such as loaded packages,
function definitions, data frames, etc.

I But, these shared objects are NOT copied into memory for
each child: that would be a huge waste of resources!

I Each child has a memory address pointer to these objects

I Furthermore, R has a copy on write philosophy

I If a child writes to an object owned by the parent, a copy is
made for the child while the parent retains the original

I This is convenient, but can be dangerous with multiple threads

I For example, if this is a big object, now that object has
multiple instances which might consume a lot of memory

30/32

The mcparallel function and nice

R> library(parallel) ## an example of multi-threading

R> library(tools)

R> for(i in 1:mc.cores)

R> mcparallel({psnice(value=19); expr})

R> obj.list = mccollect()

...

I expr is processed mc.cores times each in their own threads

Paraphrasing the psnice documentation
Unix schedules processes to execute according to their priority.
Priority is assigned values from 0 to 39 with 20 being the normal
priority and (counter-intuitively) larger numeric values denoting
lower priority. Adding to the complexity, there is a nice value:
the amount by which the priority exceeds 20. Processes with higher
nice values will receive less CPU time than those with normal
priority. Generally, processes with nice value 19 are only run when
the system would otherwise be idle to enhance system interactivity.

31/32

The mccollect function
I mccollect returns a list of return values from each thread
I in my experience, these are returned last in, first out (LIFO)

the reverse from what we might have expected
I occasionally, a sporadic failure in one, or more, of the threads

failed component(s) are missing from the list of return values
I if it is sporadic: re-running without any changes can succeed
I class(obj)[1]!=type is likely an error message so return it

R> obj.list = mccollect() ## last in, first out

R> obj = obj.list[[1]]

R> if(mc.cores==1 | class(obj)[1]!=type) {

R> return(obj)

R> } else {

R> m = length(obj.list)

R> if(mc.cores!=m)

R> warning(paste0("The number of items is only ", m))

...

R> }

32/32

The mcparallel function and random number generation

I We want each thread to have its own stream of random
numbers that is reproducible

I There is a special random number generator for this purpose

I L’Ecuyer’s combined multiple-recursive generator (CMRG)

R> library(parallel)

R> library(tools)

R> RNGkind("L’Ecuyer-CMRG")

R> set.seed(seed)

R> mc.reset.stream()

R> for(i in 1:mc.cores)

R> mcparallel({psnice(value=19); expr})

