Introduction to binary and categorical outcomes with BART

> Rodney Sparapani
> Medical College of Wisconsin
> Copyright (c) 2023 Rodney Sparapani

June 7 \& 8: BART workshop
Medical College of Wisconsin, Milwaukee campus

Funding for this research was provided, in part, by the Advancing Healthier Wisconsin Research and Education Program under awards 9520277 and 9520364.

Outline

Sparapani, Spanbauer \& McCulloch 2021
Journal of Statistical Software

- Motivation: chronic spine pain and obesity
- Dichotomous outcomes with probit BART
- Dichotomous outcomes with logistic BART
- Geweke convergence diagnostics for binary BART
- Categorical outcomes with logistic BART
- Categorical outcomes with probit BART

Motivation: chronic spine pain and obesity

- Hypothesis a: obesity is a risk factor for chronic lower back/buttock pain
- Hypothesis b: obesity is NOT a risk factor for chronic neck pain
- Data available from the National Health and Nutrition Examination Survey (NHANES) 2009-2010 Arthritis Questionnaire
- 5106 subjects were surveyed
- Demographics: age and gender
- Anthropometrics available: weight (kg), height (cm), body mass index ($\mathrm{kg} / \mathrm{m}^{2}$), waist circumference (cm)
- Sampling weights to estimate for the US as a whole
- For obesity quantified by BMI, see demo/nhanes.pbart1.R and demo/nhanes.pbart2. R in the BART R package
- For obesity quantified by waist circumference, see demo/nhanes.pbart. R in the BART3 R package

Probit BART for binary outcomes

Probit regression with latent variables: Albert \& Chib 1993 JASA

$$
\begin{aligned}
y_{i} \mid p_{i} & \stackrel{\text { ind }}{\sim} \mathbf{B}\left(p_{i}\right) \\
p_{i} \mid f & =\Phi\left(\mu+f\left(x_{i}\right)\right) \text { where } f \stackrel{\text { prior }}{\sim} \text { BART and } \mu=\Phi^{-1}(\bar{y}) \\
z_{i} \mid y_{i}, f & \sim \mathrm{~N}\left(\mu+f\left(x_{i}\right), \mathbf{1}\right) \begin{cases}\mathbf{I}(-\infty, 0) & \text { if } y_{i}=\mathbf{0} \\
\mathbf{I}(0, \infty) & \text { if } y_{i}=1\end{cases} \\
f \mid z_{i}, y_{i} & \stackrel{d}{=} f \mid z_{i} \\
{[y \mid f] } & =\prod_{i=1}^{N} p_{i}^{y_{i}}\left(1-p_{i}\right)^{1-y_{i}} \quad \text { Likelihood }
\end{aligned}
$$

Continuous BART with unit variance, $\boldsymbol{\sigma}^{\mathbf{2}}=\mathbf{1}$, and z_{i} are the data

Friedman's partial dependence function for probit BART

Friedman 2001 AnnStat

$$
\begin{aligned}
& p(x)=p\left(x_{S}, x_{C}\right) \quad \text { BART function where } x=\left[x_{S}, x_{C}\right] \\
& p\left(x_{S}\right)=\mathbf{E}_{x_{C}}\left[p\left(x_{S}, x_{C}\right) \mid x_{S}\right] \\
& \approx N^{-1} \sum_{i} p\left(x_{S}, x_{i C}\right) \equiv N^{-1} \sum_{i} \Phi\left(\mu+f\left(x_{S}, x_{i C}\right)\right) \\
& p_{m}\left(x_{S}\right) \equiv N^{-1} \sum_{i} p_{m}\left(x_{S}, x_{i C}\right) \\
& \hat{p}\left(x_{S}\right) \equiv M^{-1} \sum_{m} p_{m}\left(x_{S}\right)
\end{aligned}
$$

gbart and mc. gbart input and output

```
post <- gbart(x.train, y.train, type="pbart", ...,
    ndpost=M, keepevery=10) or
post <- mc.gbart(x.train, y.train, type="pbart", ...,
    ndpost=M, keepevery=10, mc.cores=2, seed=99)
```

Input matrices: x.train and, optionally, x.test: $\boldsymbol{x}_{\boldsymbol{i}}$

$$
\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{N}
\end{array}\right]
$$

Output object, post, of type pbart (essentially a list)
Matrices: post\$prob.train and, optionally, post\$prob.test:

$$
\begin{gathered}
\hat{p}_{i m}=\Phi\left(\mu+f_{m}\left(x_{i}\right)\right) \\
{\left[\begin{array}{ccc}
\hat{p}_{11} & \cdots & \hat{p}_{N 1} \\
\vdots & \vdots & \vdots \\
\hat{p}_{1 M} & \cdots & \hat{p}_{N M}
\end{array}\right]}
\end{gathered}
$$

predict. pbart input and output

```
pred <- predict(post, x.test, mc.cores=1, ...)
```

Input matrices: x.test: $\boldsymbol{x}_{\boldsymbol{i}}$

$$
\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{Q}
\end{array}\right]
$$

Output list with prob.test: $\hat{p}_{i m}=\Phi\left(\mu+f_{m}\left(x_{i}\right)\right)$

$$
\left[\begin{array}{ccc}
\hat{p}_{11} & \cdots & \hat{p}_{Q 1} \\
\vdots & \vdots & \vdots \\
\hat{p}_{1 M} & \cdots & \hat{p}_{Q M}
\end{array}\right]
$$

Demo: chronic spine pain and obesity

- Hypothesis a: obesity is a risk factor for chronic lower back/buttock pain
- Hypothesis b: obesity is NOT a risk factor for chronic neck pain
- system.file('demo/nhanes.pbart1.R', package='BART')
- system.file('demo/nhanes.pbart2.R', package='BART')

Friedman's partial dependence function:

 Probability of chronic pain vs. BMI

Friedman's partial dependence function:

Probability of chronic pain vs. BMI

Logistic BART for binary outcomes

Logistic regression with latent variables
Devroye 1986 Non-uniform random variate generation
Holmes \& Held 1993 Bayesian Analysis
Gramacy \& Polson 2012 Bayesian Analysis

$$
\begin{aligned}
y_{i} \mid p_{i} & \stackrel{\text { ind }}{\sim} \mathbf{B}\left(p_{i}\right) \\
p_{i} \mid f & =\Phi\left(\mu+f\left(x_{i}\right)\right) \text { where } f \stackrel{\text { prior }}{\sim} \text { BART }(\mu) \text { and } \mu=\Phi^{-1}(\bar{y}) \\
z_{i} \mid y_{i}, f, \sigma_{i} & \sim \mathrm{~N}\left(\mu+f\left(x_{i}\right), \sigma_{i}^{2}\right) \begin{cases}\mathrm{I}(-\infty, 0) & \text { if } y_{i}=\mathbf{0} \\
\mathrm{I}(0, \infty) & \text { if } y_{i}=1\end{cases} \\
\sigma_{i}^{2} & =\mathbf{4} \psi_{i}^{2} \text { where } \psi_{i} \sim \text { Kolmogorov-Smirnov (see Devroye) }
\end{aligned}
$$

Continuous BART with heteroskedastic variance and z_{i} is the data

Geweke convergence diagnostics for binary BART

Hastings 1970 Biometrika, Silverman 1986 Chapman and Hall

$$
\begin{aligned}
& \hat{\theta}_{M}=M^{-1} \sum_{m=1}^{M} \theta_{m} \\
& \sigma_{\hat{\theta}}^{2}=\lim _{M \rightarrow \infty} \mathrm{~V}\left[\hat{\theta}_{M}\right]
\end{aligned}
$$

Bayesian estimator

Asymptotic variance

Suppose $\boldsymbol{\theta}_{\boldsymbol{m}}$ is an ARMA $(\boldsymbol{p}, \boldsymbol{q})$

$$
\begin{aligned}
\gamma(w) & =(2 \pi)^{-1} \sum_{m=-\infty}^{\infty} \mathrm{V}\left[\theta_{0}, \theta_{m}\right] \mathrm{e}^{\mathrm{i} m w} \\
\hat{\sigma}_{\hat{\theta}}^{2} & =\hat{\gamma}^{2}(0)
\end{aligned}
$$

Variance estimator

Geweke convergence diagnostics for binary BART

Geweke 1992 Bayesian Statistics

- Divide your chain into two segments: \boldsymbol{A} and \boldsymbol{B}
- $m \in A=\left\{1, \ldots, M_{A}\right\}$ where $M_{A}=a M$
- $m \in B=\left\{M-M_{B}+1, \ldots, M\right\}$ where $M_{B}=b M$
- $a+b<1$, Geweke suggests $a=0.1$ and $b=0.5$

$$
\begin{array}{rlr}
\hat{\theta}_{A}=M_{A}^{-1} \sum_{m \in A} \theta_{m} & \hat{\theta}_{B}=M_{B}^{-1} \\
\hat{\sigma}_{\hat{\theta}_{A}}^{2}=\hat{\gamma}_{m \in A}^{2}(0) & \hat{\sigma}_{\hat{\theta}_{B}}^{2}=\hat{\gamma}_{m \in B}^{2} \\
z & =\frac{\sqrt{M}\left(\hat{\theta}_{A}-\hat{\theta}_{B}\right)}{\sqrt{a^{-1}} \hat{\sigma}_{\hat{\theta}_{A}}^{2}+b^{-1} \hat{\sigma}_{\hat{\theta}_{B}}^{2}} & \sim \mathbf{N}(0,1)
\end{array}
$$

Geweke convergence diagnostics for binary BART

- We have a z_{i} corresponding to each $\theta_{i}=\boldsymbol{h}\left(\boldsymbol{\mu}+\boldsymbol{f}\left(\boldsymbol{x}_{i}\right)\right)$
- In the BART R package, we created the gewekediag function which was adapted from the coda R package Plummer, Best et al. 2006
system.file('demo/geweke.pbart2.R', package='BART')

Geweke convergence diagnostics for binary BART: simulated data scenario

system.file('demo/geweke.pbart2.R', package='BART')

$$
\begin{aligned}
N & =\mathbf{2 0 0}, \mathbf{1 0 0 0}, \mathbf{1 0 0 0 0} \quad \text { sample sizes } \\
K & =\mathbf{5 0} \quad \text { number of covariates } \\
f\left(x_{i}\right) & =-\mathbf{1 . 5}+\sin \left(\pi x_{1 i} x_{2 i}\right)+\mathbf{2}\left(x_{3 i}-\mathbf{0 . 5}\right)^{2}+x_{4}+\mathbf{0 . 5} x_{5} \\
z_{i} & \sim \mathbf{N}\left(f\left(x_{i}\right), \mathbf{1}\right) \\
y_{i} & =\mathbf{I}\left(z_{i}>\mathbf{0}\right)
\end{aligned}
$$

Geweke convergence diagnostics for binary BART:

$N=200$

m
N:200, k:50

$\mathrm{N}: 200, \mathrm{k}: 50$

Geweke convergence diagnostics for binary BART:

$N=1000$

1000, k:50

Geweke convergence diagnostics for binary BART:

$N=10000$

Multinomial BART with logit link

 mbart2 function for a larger number of categoriesSparapani, Spanbauer and McCulloch 2021 JSS

- $y=\left[\begin{array}{c}y_{1} \\ \vdots \\ y_{k}\end{array}\right] \sim \operatorname{Multinomial}(n, p)$ where $p=\left[\begin{array}{c}p_{1} \\ \vdots \\ p_{k}\end{array}\right]$
- $n=\sum_{j} y_{j}$ and $\sum_{j} p_{j}=1$
- If $\boldsymbol{n}=\mathbf{1}$, computing Multinomial BART is facilitated by modeling the binary outcomes with \boldsymbol{k} logistic BARTs
$y_{i j} \sim \mathbf{B}\left(p_{i j}\right)$ where $f_{j} \stackrel{\text { prior }}{\sim}$ BART $\left(\mu_{j}\right)$ and $p_{i j} \propto F\left(\mu_{j}+f_{j}\left(x_{i}\right)\right)$
- And then combining the inference as follows
$\boldsymbol{p}_{i j}=\frac{\exp \left(\mu_{j}+f_{j}\left(x_{i}\right)\right)}{\sum_{j^{\prime}} \exp \left(\mu_{j}+f_{j}\left(x_{i}\right)\right)}$ (but each fit is slow and we need k of them)
- This would work with the probit link (and it would be much faster), but there is no theoretical basis for combining probits in this way
- Or another alternative (that also doesn't follow from theory)
$-\tilde{p}_{i j}=\frac{\Phi\left(\mu_{j}+f_{j}\left(x_{i}\right)\right)}{\sum_{j^{\prime}} \Phi\left(\mu_{j}+f_{j}\left(x_{i}\right)\right)}$

Multinomial BART with probit link

 mbart function for a smaller number of categories Sparapani, Spanbauer and McCulloch 2021 JSS- If $\boldsymbol{n}=\mathbf{1}$, fit a sequence of binary probit models (this bears some resemblance to continuation-ratio logits)
- assume \boldsymbol{k} categories where each are represented by mutually exclusive binary indicators: $y_{i 1}, \ldots, y_{i k}$
- the probability of these outcomes, $\boldsymbol{p}_{i j}$, where $\boldsymbol{j}=\mathbf{1}, \ldots, \boldsymbol{k}$

$$
\begin{aligned}
p_{i 1} & =\mathbf{P}\left[y_{i 1}=1\right] \\
p_{i 2} & =\mathbf{P}\left[y_{i 2}=1 \mid y_{i 1}=0\right] \\
p_{i 3} & =\mathbf{P}\left[y_{i 3}=\mathbf{1} \mid y_{i 1}=y_{i 2}=0\right] \\
\vdots & \\
p_{i, k-1} & =\mathbf{P}\left[y_{i, k-1}=\mathbf{1} \mid y_{i 1}=\cdots=y_{i, k-2}=0\right] \\
p_{i k} & =\mathbf{P}\left[y_{i, k-1}=\mathbf{0} \mid y_{i 1}=\cdots=y_{i, k-2}=0\right]
\end{aligned}
$$

Notice that $\boldsymbol{p}_{\boldsymbol{i k}}=\mathbf{1}-\boldsymbol{p}_{i, k-1}$ so we can specify the \boldsymbol{k} conditional probabilities via $\boldsymbol{k}-\mathbf{1}$ parameters

Multinomial BART with probit link

 mbart function for a smaller number of categories- these conditional probabilities are, by construction, defined for subsets of subjects: let $S_{1}=\{\mathbf{1}, \ldots, N\}$ and $S_{j}=\left\{i: y_{i 1}=\cdots=y_{i, j-1}=0\right\}$ where $j=2, \ldots, k-1$
- the unconditional probability of these outcomes, $\pi_{i j}$, can be defined in terms of the conditional probablities and their complements, $q_{i j}=\mathbf{1}-p_{i j}$, for all subjects

$$
\begin{aligned}
\pi_{i 1} & =\mathbf{P}\left[y_{i 1}=1\right]=p_{i 1} \\
\pi_{i 2} & =\mathbf{P}\left[y_{i 2}=1\right]=p_{i 2} q_{i 1} \\
\pi_{i 3} & =\mathbf{P}\left[y_{i 3}=1\right]=p_{i 3} q_{i 2} q_{i 1} \\
\vdots & \\
\pi_{i, k-1} & =\mathbf{P}\left[y_{i, k-1}=1\right]=p_{i, k-1} q_{i, k-2} \cdots q_{i 1} \\
\pi_{i k} & =\mathbf{P}\left[y_{i k}=1\right]=q_{i, k-1} q_{i, k-2} \cdots q_{i 1}
\end{aligned}
$$

N.B. the rules of probability ensure that $\sum_{j=1}^{k} \pi_{i j}=\mathbf{1}$

Multinomial BART with probit link
 Alligator food choice: demo/alligator.R

- 219 alligators were taken by hunters in 1985 from 4 Florida lakes
- From 1 to 4 meters long, their stomachs were removed for study
- Each gator's primary food choice was determined 5 categories: bird, fish, invertebrate, reptile or other
- Covariates: lake, sex, and size (small vs. large)

