#### Introduction to binary and categorical outcomes with BART

# Rodney Sparapani Medical College of Wisconsin Copyright (c) 2023 Rodney Sparapani

June 7 & 8: BART workshop Medical College of Wisconsin, Milwaukee campus

Funding for this research was provided, in part, by the Advancing Healthier Wisconsin Research and Education Program under awards 9520277 and 9520364.

#### **Outline**

#### Sparapani, Spanbauer & McCulloch 2021 Journal of Statistical Software

- Motivation: chronic spine pain and obesity
- Dichotomous outcomes with probit BART
- Dichotomous outcomes with logistic BART
- Geweke convergence diagnostics for binary BART
- Categorical outcomes with logistic BART
- Categorical outcomes with probit BART

#### Motivation: chronic spine pain and obesity

- Hypothesis a: obesity is a risk factor for chronic lower back/buttock pain
- ► Hypothesis b: obesity is NOT a risk factor for chronic neck pain
- ► Data available from the National Health and Nutrition Examination Survey (NHANES) 2009-2010 Arthritis Questionnaire
- 5106 subjects were surveyed
- Demographics: age and gender
- Anthropometrics available: weight (kg), height (cm), body mass index (kg/m²), waist circumference (cm)
- Sampling weights to estimate for the US as a whole
- ► For obesity quantified by BMI, see demo/nhanes.pbart1.R and demo/nhanes.pbart2.R in the BART R package
- ► For obesity quantified by waist circumference, see demo/nhanes.pbart.R in the BART3 R package

#### **Probit BART for binary outcomes**

Probit regression with latent variables: Albert & Chib 1993 JASA

$$egin{aligned} y_i | p_i & egin{aligned} \operatorname{ind} & \operatorname{B}(p_i) \end{aligned} \ p_i | f &= \Phi(\mu + f(x_i)) & \operatorname{where} f & \stackrel{\operatorname{prior}}{\sim} \operatorname{BART} & \operatorname{and} \mu = \Phi^{-1}(ar{y}) \end{aligned} \ z_i | y_i, f &\sim \operatorname{N}(\mu + f(x_i), \ 1) egin{cases} \operatorname{I}(-\infty, 0) & & \operatorname{if} \ y_i &= 0 \ \operatorname{I}(0, \infty) & & \operatorname{if} \ y_i &= 1 \end{cases} \ f | z_i, y_i & \stackrel{d}{=} f | z_i \end{aligned}$$

$$[y|f] = \prod_{i=1}^N p_i^{y_i} (1-p_i)^{1-y_i}$$
 Likelihood

Continuous BART with unit variance,  $\sigma^2 = 1$ , and  $z_i$  are the data

#### Friedman's partial dependence function for probit BART

Friedman 2001 AnnStat

$$p(x) = p(x_S, x_C)$$
 BART function where  $x = [x_S, x_C]$  
$$p(x_S) = \mathbf{E}_{x_C} [p(x_S, x_C) | x_S]$$
 
$$\approx N^{-1} \sum_i p(x_S, x_{iC}) \equiv N^{-1} \sum_i \Phi(\mu + f(x_S, x_{iC}))$$
 
$$p_m(x_S) \equiv N^{-1} \sum_i p_m(x_S, x_{iC})$$
 
$$\hat{p}(x_S) \equiv M^{-1} \sum_m p_m(x_S)$$

#### gbart and mc.gbart input and output

Input matrices: x.train and, optionally, x.test:  $x_i$ 

$$\left[\begin{array}{c} x_1 \\ x_2 \\ \vdots \\ x_N \end{array}\right]$$

Output object, post, of type pbart (essentially a list)

Matrices: post\$prob.train and, optionally, post\$prob.test:

$$\hat{p}_{im} = \Phi(\mu + f_m(x_i))$$

$$\begin{bmatrix} \hat{p}_{11} & \cdots & \hat{p}_{N1} \\ \vdots & \vdots & \vdots \\ \hat{p}_{1M} & \cdots & \hat{p}_{NM} \end{bmatrix}$$

#### predict.pbart input and output

```
pred <- predict(post, x.test, mc.cores=1, ...)</pre>
                                                                  Input matrices: x.test: x_i
                                                                                                \begin{bmatrix} x_1 \\ x_2 \\ \vdots \end{bmatrix}
                 Output list with prob. test: \hat{p}_{im} = \Phi(\mu + f_m(x_i))

\begin{vmatrix}
\ddot{p}_{11} & \cdots & \ddot{p}_{Q1} \\
\vdots & \vdots & \vdots \\
\ddot{p}_{1M} & \cdots & \ddot{p}_{QM}
\end{vmatrix}
```

#### Demo: chronic spine pain and obesity

- Hypothesis a: obesity is a risk factor for chronic lower back/buttock pain
- ► Hypothesis b: obesity is NOT a risk factor for chronic neck pain
- system.file('demo/nhanes.pbart1.R',
  package='BART')
- system.file('demo/nhanes.pbart2.R',
  package='BART')

## Friedman's partial dependence function: Probability of chronic pain vs. BMI



## Friedman's partial dependence function: Probability of chronic pain vs. BMI



#### **Logistic BART for binary outcomes**

Logistic regression with latent variables
Devroye 1986 Non-uniform random variate generation
Holmes & Held 1993 Bayesian Analysis
Gramacy & Polson 2012 Bayesian Analysis

$$y_i|p_i\stackrel{\mathrm{ind}}{\sim}\mathbf{B}(p_i)$$

$$p_i|f = \Phi(\mu + f(x_i))$$
 where  $f \stackrel{ ext{prior}}{\sim} ext{BART}(\mu)$  and  $\mu = \Phi^{-1}(\bar{y})$ 

$$z_i|y_i,f, \sigma_i \sim \mathrm{N}(\mu + f(x_i), \ \sigma_i^2) egin{cases} \mathrm{I}(-\infty,0) & \text{if } y_i = 0 \\ \mathrm{I}(0,\infty) & \text{if } y_i = 1 \end{cases}$$

$$\sigma_i^2 = 4\psi_i^2$$
 where  $\psi_i \sim$  Kolmogorov-Smirnov (see Devroye)

Continuous BART with heteroskedastic variance and  $z_i$  is the data

### Geweke convergence diagnostics for binary BART

Hastings 1970 Biometrika, Silverman 1986 Chapman and Hall

$$\hat{\theta}_M = M^{-1} \sum_{m=1}^M \theta_m$$

Bayesian estimator

$$\sigma_{\hat{ heta}}^2 = \lim_{M o \infty} \mathrm{V}\left[\hat{ heta}_M
ight]$$

Asymptotic variance

Suppose  $\theta_m$  is an **ARMA** (p,q)

$$\gamma(w) = (2\pi)^{-1} \sum_{m=-\infty}^{\infty} V[\theta_0, \theta_m] e^{imw}$$

Spectral density

$$\hat{\sigma}^2_{\hat{\theta}} = \hat{\gamma}^2(0)$$

Variance estimator

#### Geweke convergence diagnostics for binary BART

Geweke 1992 Bayesian Statistics

- ▶ Divide your chain into two segments: A and B
- $ightharpoonup m \in A = \{1, \dots, M_A\}$  where  $M_A = aM$
- $ightharpoonup m \in B = \{M M_B + 1, \dots, M\}$  where  $M_B = bM$
- ightharpoonup a+b<1, Geweke suggests a=0.1 and b=0.5

$$\hat{\theta}_A = M_A^{-1} \sum_{m \in A} \theta_m \qquad \qquad \hat{\theta}_B = M_B^{-1} \sum_{m \in B} \theta_m$$

$$\hat{\sigma}^2_{\hat{ heta}_A} = \hat{\gamma}^2_{m \in A}(0)$$
  $\hat{\sigma}^2_{\hat{ heta}_B} = \hat{\gamma}^2_{m \in B}(0)$ 

$$z = \frac{\sqrt{M}(\hat{\theta}_A - \hat{\theta}_B)}{\sqrt{a^{-1}\hat{\sigma}_{\hat{\theta}_A}^2 + b^{-1}\hat{\sigma}_{\hat{\theta}_B}^2}} \sim N(0, 1)$$

#### Geweke convergence diagnostics for binary BART

- We have a  $z_i$  corresponding to each  $\theta_i = h(\mu + f(x_i))$
- ► In the **BART** R package, we created the gewekediag function which was adapted from the **coda** R package Plummer, Best et al. 2006

```
system.file('demo/geweke.pbart2.R', package='BART')
```

### Geweke convergence diagnostics for binary BART: simulated data scenario

system.file('demo/geweke.pbart2.R', package='BART')

$$N = 200, 1000, 10000$$
 sample sizes  $K = 50$  number of covariates  $f(x_i) = -1.5 + \sin(\pi x_{1i} x_{2i}) + 2(x_{3i} - 0.5)^2 + x_4 + 0.5 x_5$   $z_i \sim \mathrm{N}(f(x_i), \ 1)$   $y_i = \mathrm{I}(z_i > 0)$ 

### **Geweke convergence diagnostics for binary BART:**

N = 200



### **Geweke convergence diagnostics for binary BART:**

N = 1000



### **Geweke convergence diagnostics for binary BART:**

N = 10000



#### Multinomial BART with logit link

#### mbart2 function for a larger number of categories

Sparapani, Spanbauer and McCulloch 2021 JSS

- $ightharpoonup n = \sum_j y_j$  and  $\sum_j p_j = 1$
- ▶ If n = 1, computing Multinomial BART is facilitated by modeling the binary outcomes with k logistic BARTs

$$y_{ij} \sim \mathrm{B}(p_{ij}) \; ext{ where } f_j \stackrel{\mathrm{prior}}{\sim} \mathrm{BART} \; (\mu_j) \; \mathrm{and} \; p_{ij} \propto F(\mu_j + f_j(x_i))$$

And then combining the inference as follows

$$p_{ij} = rac{\exp(\mu_j + f_j(x_i))}{\sum_{j'} \exp(\mu_j + f_j(x_i))}$$
 (but each fit is slow and we need  $k$  of them)

- ► This would work with the probit link (and it would be much faster), but there is no theoretical basis for combining probits in this way
- Or another alternative (that also doesn't follow from theory)

$$ightharpoonup ilde{p}_{ij} = rac{\Phi(\mu_j + f_j(x_i))}{\sum_{j'} \Phi(\mu_j + f_j(x_i))}$$

#### Multinomial BART with probit link

#### mbart function for a smaller number of categories

Sparapani, Spanbauer and McCulloch 2021 JSS

- ▶ If n = 1, fit a sequence of binary probit models (this bears some resemblance to continuation-ratio logits)
- ▶ assume k categories where each are represented by mutually exclusive binary indicators:  $y_{i1}, \ldots, y_{ik}$
- lacktriangle the probability of these outcomes,  $p_{ij}$ , where  $j=1,\ldots,k$

$$p_{i1} = P[y_{i1} = 1]$$

$$p_{i2} = P[y_{i2} = 1 | y_{i1} = 0]$$

$$p_{i3} = P[y_{i3} = 1 | y_{i1} = y_{i2} = 0]$$

$$\vdots$$

$$p_{i,k-1} = P[y_{i,k-1} = 1 | y_{i1} = \dots = y_{i,k-2} = 0]$$

$$p_{ik} = P[y_{i,k-1} = 0 | y_{i1} = \dots = y_{i,k-2} = 0]$$

Notice that  $p_{ik}=1-p_{i,k-1}$  so we can specify the k conditional probabilities via k-1 parameters

#### Multinomial BART with probit link

#### mbart function for a smaller number of categories

- these conditional probabilities are, by construction, defined for subsets of subjects: let  $S_1 = \{1, \dots, N\}$  and  $S_j = \{i: y_{i1} = \dots = y_{i,j-1} = 0\}$  where  $j = 2, \dots, k-1$
- by the unconditional probability of these outcomes,  $\pi_{ij}$ , can be defined in terms of the conditional probablities and their complements,  $q_{ij} = 1 p_{ij}$ , for all subjects

$$\pi_{i1} = P[y_{i1} = 1] = p_{i1}$$

$$\pi_{i2} = P[y_{i2} = 1] = p_{i2}q_{i1}$$

$$\pi_{i3} = P[y_{i3} = 1] = p_{i3}q_{i2}q_{i1}$$

$$\vdots$$

$$\pi_{i,k-1} = P[y_{i,k-1} = 1] = p_{i,k-1}q_{i,k-2} \cdots q_{i1}$$

$$\pi_{ik} = P[y_{ik} = 1] = q_{i,k-1}q_{i,k-2} \cdots q_{i1}$$

N.B. the rules of probability ensure that  $\sum_{j=1}^k \pi_{ij} = 1$ 

## Multinomial BART with probit link Alligator food choice: demo/alligator.R

- ▶ 219 alligators were taken by hunters in 1985 from 4 Florida lakes
- ► From 1 to 4 meters long, their stomachs were removed for study
- Each gator's primary food choice was determined
   5 categories: bird, fish, invertebrate, reptile or other
- Covariates: lake, sex, and size (small vs. large)