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Abstract II: Survival analysis and ensembles

Deficiencies of parametric time-to-event survival analysis lead to
semi-parametric methods (Cox 1972; Miller 1976). Due to the
discovery of ensembles (Krogh, Sollich 1997) and technological
advances like Moore’s law, another transition to largely nonparametric
methods for survival analysis is underway. Therefore, we choose
BART for its relative flexibility, i.e., a nonparametric approach with no
precarious parametric nor semi-parametric assumptions such as
linearity and/or proportionality. Furthermore, due to its Bayesian
nonparametric underpinnings, BART can be naturally extended to
interpretable functions as targets of inference along with their
measures of uncertainty, e.g., the survival function and its 95%
credible intervals.
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Survival analysis with Cox Proportional Hazards
Survival analysis with the discrete time approach
Survival analysis with BART

Example: advanced lung cancer prognosis
demo/lung.surv.bart.R in the BART package
and demo/lung.relrisk.R in the BART3 package

Motivation: diabetes and recurrent hospital admissions
demo/dm.recur.bart.R

Recurrent events with BART

Motivation: liver transplant waiting list
demo/liver.crisk.bart.R

Competing risks



Semi-parametric survival analysis
with Cox Proportional Hazards

Cox 1972 JRSS-B

Data: (s;, ;),x; where §; = 0 for censoring and §; = 1 for event
0 =1t <--- <ty < oc:distinct ordered event times, s;

(0,¢p)] - - - tg—1)s ()]
A(t,x;) = Xo(t)e? Linear and proportional
evi
BIM®] =] ——5 Partial Likelihood
i 24er@) ¢’
So(f) = e MO where Ay(t) = .
o(t) =e where Ay(?) Z . i
<t £4jER(t:)

0;

S(t,x;) = So(t)>PiB)



Parametric survival analysis: the discrete time approach

0 =tq) <--+ <tk < oo :distinct ordered times, s;
ind . .
Yiilpij ~ B(p;j) wherej=1,...,J; = arg rr;_lns,- <t

pi = p(t(j), x;j) where xy = xi(t(;))

N Ui
blp] = H HP‘,Yj"(l — pii)' ™ Likelihood and identifiability
i=1j=1
S(tg),x5) = Pt > tgyley] = [[ A - py)

J<i

Discrete time intensity model => longitudinal binary regression model



Nonparametric survival analysis with BART
Sparapani, Logan et al. 2016 Statistics in medicine (SparLoga16)

0 =19 <--- <tg) < oo :distinct ordered times, s;

ind

yiilpi ~ B(p;) wherej =1,...,J; = arg mjinsi < LG

J. =

ZJ"] ~ N X K total number of indicators y;;
i
yi =6:1G =)
pij = p(t(),x;) where x; = x;(t())
= ®(p+ £ (1), x;)) where f " BART (H = 50)
pn = ®1(5) where y = J__IZ Zyij
i
S(tg)sxg) = Plt > tglez] = [J (1 = py)
J<i

Discrete time intensity model => longitudinal binary BART



Survival analysis with BART and inference

We generate samples of f from the posterior with MCMC
f(t, x) = M! me (t,x) Estimate f
m
S(t,x) =M1 Z Sm(t,x) Survival function
m

(So.025(¢,x), So0.975(¢,x)) 95% Credible Interval



Survival analysis with BART and

Friedman’s partial dependence function
Friedman 2001 AnnStat

S(t,x) = S(¢t,xs,xc)  BART function where x = [xg, xc]
S(t,xs) = E,, [S(t,xg,xc)|t,xs]

=~ IV_1 Z S(t, xs,x,-c)

1

Sm(tyxs) =N71Y St xs, xic)

S(t’xS) = M_l Zsm(t,xS)
m



Relative Risk with
Friedman’s partial dependence function

t
IM Relative Risk
pm(t, Xd, xC)

_ D(p+ f(t,xn,xc))

B (1 + fon (1, X4, XC))
t. X+ Xi

RR,,(t,x,,x5) = N7! IM
i pm(t’xd,xic)

RR,(xy,xq) = K1 ZRRm (t(,-),x,,,xd) Assuming Proportionality
J

RRm(taxnaxdaxC) =




surv.bart and mc.surv.bart input and output: part 1
post=surv.bart(x.train, times=times, delta=delta,
., ndpost=M, ntree=50, keepevery=10) or
post=mc.surv.bart(x.train, times=times, delta=delta,
...,ndpost=M,ntree=50,keepevery=10,mc.cores=2,seed=99)

Input vector times with K distinct values and x. train: x;

X1
X2

XN
Output post, of type survbart which is essentially a list
of matrices including: post$prob. train: p, (t:), x:)

ﬁ](t(l),xl) ..o ﬁl(t(Jl),xl) ..o ﬁl(t(l),xN) .o ﬁ](t(JN),xN)

Pu(tyx1) o Pu(typyx1) o PuCtayxn) o Pu(tyy)Xn)



surv.bart and mc.surv.bart input and output: part 2
post=surv.bart(x.train, times=times, delta=delta,

X.test=x.train, ..., ndpost=M) or
post=mc.surv.bart(x.train, times=times, delta=delta,
X.test=x.train, ..., ndpost=M, mc.cores=2, seed=99)

Input vector times with K distinct values and x. train: x;

X1
X2

XN
Output post, of type survbart which is essentially a list
ofmavkmsindudmg:post$surv.test:§m(qn,x0

Si(tayx1) o Silt@yx1) e Si(tayan) e S1(tayn)

S‘M(t(l),xl) SM(t(K),xl) vee S‘M(t(l),xN) vee S'M(t(,(),xN)



surv.pre.bart input and output: part 1

pre <- surv.pre.bart(times, delta, x.train)

Output a list containing the data transformed such as

matrix pre$tx.train and vector pre$y.train:

1)
L)

L)

L tw)

X1

X1

yn=20

Y, - 01

YN = 0
IR = oN |




surv.pre.bart input and output: part 2

pre <- surv.pre.bart(times, delta, x.train,
X.test=x.train)

Output a list containing the data transformed such as matrix

pre$tx.test:

IR
Lky *1

lay *n

L LK) XN



predict.survbart input and output

pred <- predict(post, pre$tx.test, mc.cores=1, ...)

Input matrices: x.test: x;

X1
X2

X9 |
Output pred of type survbart with pred$surv. test: S, (¢, xi)

Sitayx1) o Siltayx1) e Sitayxe) e Si(tx)xo)

S'M(t(l)’xl) SM(t(K),xl) SM(t(l),xQ) SM(t(K),xQ) i



Survival analysis: advanced lung cancer prognosis

Loprinzi et al. 1994 JCO

» The North Central Cancer Treatment Group
surveyed 228 advanced lung cancer patients

» Study focused on prognostic variables
P Patient responses paired with some clinical variables
» We control for age, gender and

Karnofsky performance score as rated by the physician

» We will compare males to females
with Friedman’s partial dependence function

» lung data set in the BART R package

system.file(’demo/lung.surv.bart.R’, package="BART’)
system.file(’demo/geweke.lung.surv.bart.R’,
package="BART’)



Friedman’s partial dependence function with
95% credible intervals: M (blue) vs. F (red)
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Geweke convergence diagnostics:
Advanced lung cancer example

0 5 10 15 20 25 30 35



Geweke convergence diagnostics:
live demonstration

» system.file(’demo/geweke.surv.bart.R’,
package="BART’)

» Simulated data set: N = 100, P = 20

> 1 ~ Wei (2,¢/*))

» adapted from Friedman’s five-dimensional test function
Annals of Statistics 1991

» f(x;) = 3 + sin(mxxz) — 2(x3 — 0.5)% 4+ x4 — 0.5x5

> 20% censoring



Diabetes and recurrent hospital admissions

> We have IRB approval to study a cohort of newly diagnosed
diabetes patients from a single health care system

> We have the electronic health records (EHR) for these patients
from 2007-2012: prior records may, or may not, be available

» EHR are an omnibus of digital health care information

» We focus on 82 covariates: patient demographics, health
insurance, health care charges, diagnoses, procedures,
anti-diabetic therapy, laboratory values and vital signs

» By its nature, EHR data is fundamentally time-varying

» EHR covariates are occasionally missing at time zero even when
carrying the last value forward

» Imputed 15 continuous variables with Sequential BART
(Xu, Daniels & Winterstein 2016 Biostatistics)



Diabetes and recurrent hospital admissions

>

488 patients followed 5 years from 2008-2012
the survival rate was high 0.939 (noninformative censoring)
yet experienced a high rate of hospital admissions: 525 total

For diabetes, which covariates increase the risk of admission?
What about the number of previous admissions or an acutely
recent admission?

What are the functional forms of the covariates i.e. linear,
quadratic, logarithm, etc.? Are the covariate effects additive or
multiplicative?

Are there interactions? Are these effects constant with respect to
time, i.e., proportionality assumption?

We want to avoid precarious restrictive assumptions hence we
chose to use Bayesian Additive Regression Trees (BART)



Recurrent event analysis with BART

Sparapani, Rein et al. 2018 Biostatistics (SparRein18)
Data: (Si,til, cen ,t,-Ni,x,-(t))
(0,¢(1)] - - - (¢(k—1)> t(K)]: grid of distinct ordered times for s; and £

ind

yilpi ~ B(py) J=1...,Ji
yj = max It =1()
pij = ®(n +f(t),x;)) f "~ BART
N i
[ylp] = H leyjff(l _pl.j)l_y"f Likelihood
i=1j=1
1G) J
A(tg)sx5) = /0 dA@x(0) = > py
=1

Discrete time intensity model = longitudinal binary BART



Semi-Markov process and conditional independence

» Note that (¢, - . . ,Z;n;) are not independent
rather, assume that they are conditionally independent given x;(¢)
and the event history which we summarize by N;(¢) and v;(t)
» N;(t) is the number of events process and N; = N;(s;)
When N; = 0, thentjy, = tip = 0
» Semi-Markov process, i.e., condition on summaries of
the event history just prior to time # which is denoted by t—

Number of events just prior to time ¢ Ni(t—)
Sojourn time process from the last event  v;(¢) = ¢ — iy, (1)

yilpi ™ B(py)
pi = ®(p + 1), X))

where 35,] = [v,-(t(,-)), Ni(t(j—l))a x,-j]



Diabetes and recurrent hospital admissions

Patients Admissions

Number of Admissions 488 525
(63.0) 0
( ) 79 (15.0)
2-3 50 (10.3) 115 (21.9)
( ) 331 (63.1)




Diabetes and recurrent hospital admissions

> We focus on 82 covariates: patient demographics, health
insurance, health care charges, diagnoses, procedures,
anti-diabetic therapy, laboratory values and vital signs

> These covariates are inherently time-dependent and occasionally
missing at time zero even when carrying the last value forward

» Imputed 15 continuous variables with Sequential BART
8 lab values and 7 vital signs
Xu, Daniels & Winterstein 2016 Biostatistics

P> Variable selection: Decoupling Shrinkage and Selection (DSS)
Hahn & Carvalho 2015 JASA; McCulloch et al. 2015 JSM

» Divided the cohort at random into training and validation sets

P> Risk agonists: insulin treatment, peripheral vascular disease
(PVD) and the number of previous admissions, N;(t—)



Diabetes and recurrent hospital admissions

Patients Admissions
Gender 488 525
M 216 (44.3) 228 (43.4)
F 272 (55.7) 297 (56.6)
Race 488 525
Black 174 (35.7) 265 (50.5)
White 314 (64.3) 260 (49.5)
Age 488 525
Mean, SD 60.9 150 603 157
ZIP3 area 488 525
532/urban 378 (77.5) 454 (86.5)
530/suburb 110 (22.5) 71 (13.5)
Insurance and Age 488 525
Government 65+ 191 (39.1) 224 (427
Government <65 138 (28.3) 208 (39.6
Commercial <65 143 (29.3) 71 (135
Other <65 16 (3.3) 22 (4.2




Diabetes and recurrent hospital admissions

95%
Relative Credible
Patients Admissions  Intensity Interval
Insulin 488 525 2.39 1.56, 3.25
Yes 206 (42.2) 391 (74.5)
No 282 (57.8) 134 (25.5)
PVD 488 525 2.90 2.00, 3.89
Yes 272 (55.7) 488 (93.0)
No 216 (443) 37 (7.0

partial dependence function



Hospital admission risk profiles

N;(t) with time in months
Insulin PVD |0 12 24 36 48 60

Risk
Low 0 0 O 0 0O O 0 o
Medium 1 0 0 O 1 1 1 1

Hgh | 1 1 |0 1 2 3 4 4



Risk profiles: Cumulative Intensity
partial dependence function

A(t) and CDI(t)

t (months)




Risk profiles: Relative Intensity and 95% Credible Intervals
partial dependence function
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Risk profiles: Relative Intensity & 95% Prediction Intervals
partial dependence function
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Diabetes and hospital admission risk

» Some diabetes patients are at high risk for hospital admission
» diagnosed with PVD
» prescribed insulin therapy
» with a recent hospital admission
» and/or several previous hospital admissions
» Health policy implications: Diabetic patients’ health care
post-discharge should be carefully orchestrated to ensure the
delivery of quality clinical care which maximizes healthy
outcomes while preventing adverse events and costly
unnecessary hospital admissions

» BART package contains a roughly 20% random sample
50 patients from training: ydm20.train & xdm20.train
50 patients from validation: xdm20.test

» See example: system.file(’demo/dm.recur.bart.R’,
package="BART’)

» The complete data set is available in the BART3 package



Competing risks: Method 1 crisk2.bart
Sparapani, Logan et al. 2019 SMMR (SparLoga19)
Data: (#;, d;,x;(¢)) where §; € {0,1,2}
0=t <--- <Yk < oo:distinct ordered, ¢;, times

g =& >0)1G=J),j=1,...,J;
y1ilp1j ~ B(p1y)

p1j = ®(p1 + f1(t), x;)) where fi P BART

yai = I(6; = 1|6; > 0)

yailp2i ~ B(p2)
P2 = ®(p2 + f2(ti,xy,)) where f °~" BART
N Ji

vl = (TTTTPa -t | [ T p2a1—pat>

i=1j=1 i:6;>0



Competing risks: Method 1 crisk2.bart

k
S(t,x:(1)) =1~ F(t,x:(0) = [[(1 — py)

j=1
where k = arg max [t;) < |
J

Fita) = [ 'S w1 (—)) At (2 () )t

k
= S(tg-1),xi(ti—1)))P15® (12 + f2(t () xi))
=1

F(t,x;(t)) =/0S(u—,xi(u—)))\z(u,xi(u))du

k
= Zs(t(j—l)’xi(t(j—l)))plij [1 - <I)(NZ +f2(t(i)$xij))]
j=1



Competing risks: Method 2 (SparLoga19) crisk.bart
Data: (#;, 0;,x;(t)) where 6; € {0,1,2}
0=ty <--- <tg) < oo:distinct ordered, ¢, times

yy =W =1)IG=J),j=1,...,J;
yiilp1i ~ B(p1y)
p1ij = ®(u1 + f1(t), x;)) where fi P BART

yZiJ':I((sizz)I(i:Ji)vj:17--'7Ki
where K; = J; — 1(6; = 1)

y2ij|p2i ~ B(p2y)
p2ij = ®(p2 + fa(t(), x;)) where f; P BART

N Ji
yip) =TT (Hpiz;'f a —pm”w)

i=1 \j=1

K;
X (HI’ZZ?'(I —sz’)l“"f)
J=1



Competing risks: Method 2 crisk.bart

k
S(t,xi(1)) =1 —F(t,x:(t)) = [[(1 — p1g) (1 — p2y)
j=1

where k = arg max [tg) <t
Fita) = [ 'S 31— M (2 () )

k
=D S(tG-1)xi(tG—1))p1

=1

Fa(t,x(t)) = /0 S (u—, xi(u—)) Ao (1 x: (u) ) du

k
= Z S(t(j—l)a xi(t(i—l))) (1 — p1j)p2ij
Jj=1



Competing risks with more than two causes:

Method 1 crisk2.mbart
Data: (#;, 0;,x;(t)) where 9; € {0,1,...,K}

0= to) < --- <ty < oo: distinct ordered, #;, times

yi =16 >0)IG=Ji),j=1,...,Ji
yiilpy ~ B(py)

pij = ‘I’(p,() —|—f0(t(]~),x,-j)) where fj P BART
i = 1(8; = k|6; > 0) where ;0 = I(; > 0)
;| m; ~ Multinomial (1, 7;) where 7y (¢, xis,)

I‘Ol‘

is a complex function of fir '~ BART , k' =1, . -1

K

v, ¢¥lp, w] = H H (1 —pij)l_yif H ( d’"‘(l ﬂ-ik)l—%k)wio

i=1 = k=1



Competing risks with more than two causes:
Method 1 crisk2.mbart

I
S(t,xi(t)) =1- F(taxi(t)) = H(l _pij)

=1
where j’ = arg max [t < 1]
j

Fult,x(t)) = /0 S, xi(u—)) e (1 x1 (1))

2!

J
=) S(tg—1)xi(t 1)) Pymie (£ () i)

j=1



Competing risks with 3 causes: Method 2 crisk3.bart
Data: (#;, ;,x;(¢)) where §; € {0,1,2,3}
0 =tq <--- <trg) < oo:distinct ordered, ¢, times
yy =& =0D)IG=J),j=1,....J;
yijlp1 ~ B(p1y)
p1ij = ®(p1 + f1(t), x;)) where fi P BART
yzij:I((si :2)1(’:J1)7J: 1,...,K;
where K; = J; — 1(0; = 1)
¥2i|p2ij ~ B(p2;j)
D2 = (I)([Lz —I—fz(t(i),x,_',')) where f> P BART
yi =& =3)1G=J),j=1,...,L
where L; = J; — 1(6, € {1, 2})
¥3ilp3i ~ B(pay)
p3j = ®(us + f3(t;), x;)) where f3 P BART



Competing risks with 3 causes: Method 2 crisk3.bart

k

S(t,xi(1)) = 1= F(t,x:(0) = [ [(1 = p1y) (1 = p2y) (1 — p3y)
j=1

where k = arg max [t;) < ]
J

k
Fi(t,xi(t)) = Zs(t(i—l)axi(t(j—l)))Plij
j=1
k
Fa(t,x,(t) = > S(tg—1),xi(tg—1))) (1 — p1y)p2qj
j=1
k
F3(t,xi(t)) = Zs(t(i—l)axi(t(i—l)))(l — p1i) (1 — p2j)p3i
j=1



Liver transplant

Kim et al. 2006 Hepatology

| 2
| 2
>

v

Mayo Clinic Liver transplant waiting list data from 1990-1999
During this period, liver allocation policy was flawed

Donor livers from subjects with blood type O can be used by
patients with A, B, AB or O blood types, whereas an A, B, AB liver
can only be used by an A, B, AB recipient respectively

Type O subjects on the waiting list were at a disadvantage since
the pool of competitors was larger for type O donor livers

Current policies have evolved and now depend on each individual
patient’s risk and need which are assessed and updated regularly
while a patient is on the waiting list

However, the overall donor liver shortage remains acute today
transplant data set in BART R package: N = 815

system.file(’demo/liver.crisk.bart.R’,
package="BART’)



Liver transplant Competing Risks for Type O patients
Aalen-Johansen estimator available in survival R package
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Liver transplant Competing Risks for Type O patients
Aalen-Johansen and BART
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