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Dirichlet Distribution (courtesy of Prakash Laud)

(x1, · · · , xV) ∼ J("1, · · · , "V)

x ∼ J(")
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Dirichlet Properties (courtesy of Prakash Laud)

I Univariate marginals
x j ∼ Heta("j , "0 − "j)

I Multivariate marginals by rescaling
(

x1
∑W

j=1 x j
, · · · ,

xW
∑W

j=1 x j

)

∼ J("1, · · · , "W) where 2 ≤ W ≤ V

I Collapsed cells property
(x1 + x2, x3, · · · , xV) ∼ J("1 + "2, "3, · · · , "V)

I Conditional distributions by rescaling
(

x1
1−

∑V
j=W+1 x j

, · · · ,
xW

1−
∑V

j=W+1 x j
|xW+1, · · · , xV

)

∼ J("1, · · · , "W)

I Conjugacy with Multinomial

x | ) ∼ S (n, )), ) ∼ J(") ⇒ ) | x ∼ J(" + x)



3/22

The DART prior: BART with sparse variable selection
I Alternatively, for variable selection, you can specify a Dirichlet

prior which is more appropriate if the number of covariates is
large (Linero 2018, JASA)

I we can represent the probability via the sparse Dirichlet prior

as [s1, ..., sV] |)
prior
∼ D ()/V, ..., )/V) which is specified by the

argument sparse=TRUE while the default is sparse=FALSE

for uniform s j = V−1

I The prior parameter ) can be fixed or random: supplying a
positive number will specify ) fixed at that value while the
default theta=0, set to zero, specifies a random value learned
from the data

I The random ) prior is induced via )/() + 1)
prior
∼ Beta (a, b)

where the parameter 1 can be specified by the argument rho
(which defaults to 0, zero, representing the value V; provide a
value to over-ride), the parameter b defaults to 1 (which can
be over-ridden by the argument b) and the parameter a
defaults to 0.5 (which can be over-ridden by the argument a)
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The DART prior

I The distribution of theta controls the sparsity of the model:
a=0.5 induces a sparse posture while a=1 is not sparse and
similar to the uniform prior with probability s j = V−1

I If additional sparsity is desired, then you can set the argument
rho to a value smaller than V

I Here, we take the opportunity to provide some insight into
how and why the sparse prior works as desired

I The key to understanding the inducement of sparsity is the
distribution of the arguments to the Dirichlet prior: )/V

I it can be shown that )/V ∼ L(a, b, 1/V) where L(.) is the
Beta Prime distribution scaled by 1/V

I The non-sparse setting is (a, b, 1/V) = (1, 1, 1)

I As we will see, sparsity is increased by reducing 1 : (1, 1, 0.5);
reducing a : (0.5, 1, 1) which is the default;
and even moreso by reducing both: (0.5, 0.5, 1)
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The DART prior
The distribution of )/V and the sparse Dirichlet prior

Sparapani, Spanbauer and McCulloch 2021 JSS
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Posterior computation for DART

I Posterior computation related to the Dirichlet sparse prior

I If a Dirichlet prior is placed on the variable splitting
probabilities, s, then its posterior samples are drawn via Gibbs
sampling with conjugate Dirichlet draws

I The Dirichlet parameter is updated by adding the total
variable branch count over the ensemble, m j , to the prior
setting, )

V , i.e.,
[ )
V + m1, ...,

)
V + mV

]

(Multinomial conjugacy)

I In this way, the Dirichlet prior induces a “rich get richer”
variable selection strategy

I The sparsity parameter, ), is drawn on a grid of values

I This draw only depends on [s1, ..., sV]

I BART R package: each variable’s branch count is returned in
the fit object: varcount and varcount.mean

I And the probabilities are returned too: varprob and
varprob.mean
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DART with grouped variables

Chipman, George et al. 2021; Chapter: Computational approaches
to Bayesian Additive Regression Trees; Book: Computational
Statistics in Data Science

I We have V variables, but W of them encode a grouped variable
such as dummy indicators for a categorical variable (these are
the first W variables without loss of generality): x1, ..., xW

I N.B. This applies to multiple grouped variables; however, for
brevity, a single grouped variable will suffice

I The variable selection probabilities are s = [s1, ..., sV]

I There are two other probability collections of interest

I The collapsed probabilities, p =
[

s1 + · · · + sW, sW+1, ..., sV
]

I And the re-scaled probabilities q =
[

s̃1, ..., s̃W
]

where s̃ j ∝ s j

such that
∑W

j=1 s̃ j = 1
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DART with grouped variables

I Blindly using Dirichlet variable selection probabilities,
then we arrive at the following

I s|)
prior
∼ DV ()/V, ..., )/V)

where the subscript V is the order of the Dirichlet

I p |)
prior
∼ D

˜V (W)/V, )/V, ..., )/V) where ˜V = V − W + 1

I q |)
prior
∼ DW ()/V, ..., )/V)

I The problem: the distribution of p1, the first element of p,
puts more prior weight on the grouped variable than the others
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DART with grouped variables

I The solution to the problem is trivial: re-scale q by W−1 while
naturally re-defining p and s as follows.

p |)
prior
∼ D

˜V

(

)/˜V, ..., )/˜V
)

q |)
prior
∼ DW

(

W−1)/˜V, ..., W−1)/˜V
)

s|)
prior
∼ DV

(

W−1)/˜V, ..., W−1)/˜V, )/˜V, ..., )/˜V
)

prior
∼ DV ((q |)), ( p |)))

I The BART3 R package’s gbart function takes this approach
automatically when you supply a data frame with the
covariates where the categorical variables are factors
(rather than supplying a matrix for the covariates)



10/22

Thompson Sampling Variable Selection (TSVS)
Liu and Rockova, JASA 2023
I A stochastic optimization approach to subset selection based

on reinforcement learning as an extension of the DART model
based on Thompson Sampling (Russo, Van Roy et al. 2018
Foundations and Trends in Machine Learning)

I It can be regarded as a multi-armed bandit problem where
each variable is treated as an arm

I yi = f (xi) + &i where &i
iid
∼ T(0, 22)

I Variable selection problem: determine the optimal subset, or
near-optimal, YU ⊂ {1, ..., V} with cardinality WU = |YU |
predictors that have an impact on the fit f (xi)

I The variable inclusion probabilities have Beta priors

) j
ind
∼ Beta(a j , b j) where j = 1, ..., V

I $ j : an unknown Bernoulli reward if x j is chosen

$ j
ind
∼ B

(

) j
)

I ) j : the unknown mean reward is the inclusion probability
E

[

$ j
]

= V($ j = 1|) j) = ) j
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Multi-armed Bandits (MAB)

I MAB: Decide which of V arms to play at step t, given the
outcome of the previous t − 1 steps where t = 1, ..., Z

I Goal: maximize sum of expected rewards and minimize regret

I Multi-play Scenario: At each step t, select a subset Yt of arms
and receive binary rewards of all selected arms

I Reward, $ j (t): $ j (t)
ind
∼ H() j (t))

N.B. this is Liu’s notation: typically, it would be $ jt , ) jt

I Maximize the sum of expected rewards over the drawn arms

I Optimal action: select arms YU(t) = { j : $ j (t) = 1}

I Regret, R(Z): expected cumulative reward difference between
the optimal drawing policy and the selected draws

K[R(Z)] = K

{

Z
∑

t=1

©



«

∑

j∈YU

) j (t) −
∑

j∈Yt

) j (t)
ª

®

¬

}
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Multi-armed Bandits (MAB)

I Global Reward, XI (Y): a computational oracle
regret minimizer when an oracle furnishes probabilities ) j (t)

XI (Yt) =
∑

i∈Yt

log(I + $ j (t))

rI) (Yt) = K[XI (Yt)] =
∑

i∈Yt

[

) j (t) log

(

I + 1

I

)

− log

(

1

I

)]

I Computational Oracle, YU: YU = argmaxY rI) (Y)

YU =

{

j : ) j (t) ≥
log(1/I)

log[1 + 1/I])

}

Setting I = (
√
5 − 1)/2 gives the median probability model

YU = { j : ) j (t) ≥ 0.5}
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TSVS Algorithm for High Dimensions: Big V or Big T

Initialize parameters: you may need to experiment with those in
red to get adequate performance especially S and Z

I Ĩ = log(1/I)
log(1+I)/I for some 0 < I < 1 (typically, Ĩ = 0.5)

I R, length of DART chain burn-in discarded

I S, length of DART chain to keep
N.B. typically, you have to run DART serially, i.e., NOT with
parallel processing since the effective lengths of the chain in
parallel would be S/mc.cores rather than S

I N, number of trees: typically, N = 10

I Z, number of steps

I a j (0) = a > 0, b j (0) = b > 0 where j = 1, ..., V
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TSVS Algorithm

For t = 1, ..., Z

a. For j = 1, ..., V, draw ) j (t) ∼ Heta(a j (t − 1), b j (t − 1))

b. Set Yt = { j : ) j (t) ≥ Ĩ}

c. Fit DART model ft (x(t)) with x j (t) where j ∈ Yt

d. For j = 1, ..., V

(i) If j ∉ Yt , then set $ j (t) = 0
Else calculate reward $ j (t) from DART fit ft (.)

(ii) Set a j (t) = a j (t − 1) + $ j (t)
(iii) Set b j (t) = b j (t − 1) + 1 − $ j (t)

(iv) Calculate inclusion probability 0 j (t) =
a j (t)

a j (t)+b j (t)

Trajectories of important covariates for 0 j (t) will exceed 0.5 by Z
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TSVS Algorithm: “Offline” for Big V

I N.B. there are no limits on V

I For example, TSVS can be used when V >> T

I Typically, S = 1000

I If j ∈ Yt , then set $ j (t) = 1 when the corresponding
varcount for the Sth draw is m jS > 0

I Otherwise, set $ j (t) = 0

I Liu and Rockova recommend Z = 500, but our experience
has been that Z = 20 or 50 is often all that is needed
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TSVS Algorithm: “Online” Big T >> V with sharding

I Typically, S = 10000

I If j ∈ Yt , then set $ j (t) = 1 when the corresponding
varcount.mean for the S draws is S−1

∑

k m jk = m j ≥ 1

I Otherwise, set $ j (t) = 0

I Typically, Z = 100

I The data set is partitioned into shards of size T/Z and at
each step you progress through the shards rather than the
whole data set which is too big for DART to process efficiently

I However, due to the performance of TSVS, you may need to
pass through the data set multiple times with bootstrapping

I So, you might consider H bootstrap passes through the data
Z = G × H with random shards of size T/H

I Typically, H = 5 and G = 20
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Diabetes and recurrent hospital admissions
I A cohort of newly diagnosed diabetes patients and their

hospital admissions (and occasionally multiple admissions)
from a single health care system

I We have the electronic health records (EHR) for these patients
from 2007-2012: prior records may, or may not, be available

I EHR are an omnibus of digital health care information

I We focus on 84 covariates: time, number of previous
admissions, patient demographics, health insurance, health
care charges, diagnoses, procedures, anti-diabetic therapy,
laboratory values and vital signs

I By its nature, EHR data is fundamentally time-varying

I EHR covariates are occasionally missing at time zero even
when carrying the last value forward so we imputed 15
continuous variables with Sequential BART
(Xu, Daniels & Winterstein 2016 Biostatistics)
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Diabetes and recurrent hospital admissions

I 488 patients followed 5 years from 2008-2012
the survival rate was high 458/488=0.939
and hospital admissions were more than one apiece: 525 total

I For diabetes, which covariates increase the risk of admission?
What about the number of previous admissions or an acutely
recent admission?

I What are the functional forms of the covariates, e.g., linear,
quadratic, logarithm, etc.? Are the covariate effects additive
or multiplicative?

I Are there interactions?

I We want to avoid precarious restrictive assumptions hence we
choose to do variable selection with BART
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Diabetes and recurrent hospital admissions

Patients Admissions

Number of Admissions 488 525
0 308 (63.0) 0
1 79 (16.2) 79 (15.0)
2-3 50 (10.3) 115 (21.9)
4-16 51 (10.5) 331 (63.1)
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Diabetes and recurrent hospital admissions
Patients Admissions

Gender 488 525
M 216 (44.3) 228 (43.4)
F 272 (55.7) 297 (56.6)

Race 488 525
Black 174 (35.7) 265 (50.5)
White 314 (64.3) 260 (49.5)

Age 488 525
Mean, SD 60.9 15.0 60.3 15.7

ZIP3 area 488 525
urban 378 (77.5) 454 (86.5)
suburb 110 (22.5) 71 (13.5)

Insurance and Age 488 525
Government 65+ 191 (39.1) 224 (42.7)
Government <65 138 (28.3) 208 (39.6)
Commercial <65 143 (29.3) 71 (13.5)
Other <65 16 ( 3.3) 22 ( 4.2)
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Diabetes and recurrent hospital admissions

I We focus on 84 covariates: time, number of previous
admissions, patient demographics, health insurance, health
care charges, diagnoses, procedures, anti-diabetic therapy,
laboratory values and vital signs

I Randomly divided into training and validation sets

I Training set: “fit the fit” (DSS) vs. TSVS

I DSS: Serum calcium, peripheral vascular disease (PVD), the
number of previous admissions, Ti (t−), insulin treatment,
and peptic ulcer disease (PUD)

I TSVS: Serum calcium, peripheral vascular disease (PVD), the
number of previous admissions, Ti (t−), blindness,
cardiomyopathy, creatinine, gangrene and Relative Value Units
(RVU) 31 to 90 days earlier
see demo/diabetes.R in the BART3 package
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TSVS variable selection plot
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