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QOutline

» Motivation: a clinical application in Personalized
Hematopoietic Stem Cell Transplant (HSCT) requires a new
time-to-event BART methodology that scales better

» Pros and Cons of BART survival analysis methods
» BART and Heteroskedastic BART (HBART)

» Accelerated Failure Time (AFT) and AFT BART
» Nonparametric Failure Time (NFT) BART

» Dirichlet Process Mixtures (DPM), Constrained DPM and
the Low Information Omnibus (LIO) DPM prior hierarchy

» Simulated data sets and methodology comparisons
» nftbart v1.6 R package on CRAN: nftbart v1.7 on my github

» Growth charts re-visited in nftbart v1.7: demo/bmx.R



Personalized Hematopoietic Stem Cell Transplant (HSCT)

» HSCT is a standard treatment for blood/bone marrow cancers

» Here we are concerned with unrelated donors that are human
leukocyte antigen (HLA) 8/8 matched to the recipients
transplanted from 2016:2019

» Goal: optimal donor matching for better recipient outcomes

» The outcome here is time to an event, i.e., event-free survival
with both right and left censoring

» Events include death, relapse, graft failure/rejection or
moderate/severe chronic graft vs. host disease (GVHD):
whichever comes first

» There are P = 45 covariates that may have an impact

» 5 are donor-related characteristics: age, sex/childbearing,
HLA DPB1 match, HLA DQB1 match and CMV match

» We wanted to /learn the (likely complex) functional relationship
between these covariates and the outcome with BART

» The cohort has 10016 for training and 1802 for validation

» A bit too large for our Discrete Time BART

» For this application, we developed NFT BART methodology



Methodological and Computational Pros and Cons

Published BART survival analysis methods

Hier. Discrete AFT Mod. NFT
Property Time (DT)
Restrictive Con Pro Con Pro Pro
Assump.
Nonparam. Con Pro Pro Pro Pro
Left-censor Con Con Pro Con Pro
Comp. Pro Con Pro Con Pro
Complexity
First-author | Bonato | Sparapani | Henderson | Linero | Sparapani
Year 2011 2016 2018 2021 2023




Bayesian Additive Regression Trees (BART)
NFT notation

Sparapani, Logan, Laud & McCulloch 2023 Biometrics

yi = u(x;)+ € where € £y N(O, 0'2)

prior

pu ~ BART (a =0.95,b =2,H =200,k =2,1 =)
pee) = i+ ) g T, M)
h



Heteroskedastic BART (HBART)
NFT notation

Pratola, Chipman, George & McCulloch 2019 JCGS

yi = u(x;)+ ¢ where ¢ i N(O, o’ (x,-))

pI'lOI'

BART (a,b, H = 200, = 5, i)

2 prlor

HBART (a = 0.95, b_2 H= 40, /l V)
2 _ ~ —_— —~

o°(x;) = l_[g(x,-;‘Th,Mh) where H ~ H/5

h=1



The Accelerated Failure Time (AFT) model: part 1

» Time-to-event data notation: (#;,6;) i =1,...,N subjects
if 6; = 0, then ¢; is a right censoring time
else if §; = 1, then a failure time
else if 6; = 2, then left censoring

» How is failure time explained by a vector of covariates x;7
» take logarithms y; = log#; and use a linear model (Con)

yi=[Lx/1B+0€ = Po+x/Bx +0€
where B and o are unknown coefficients to be estimated

with ¢ i Fe(ue = 0,02 =1)
which is typically parametric (Con)



The Accelerated Failure Time (AFT) model: part 2

» Consider a baseline survival function for a standard subject
where the covariates are centered, i.e., So(¢) = S(¢|]x =0).

» We can define the survival function for any given subject with
a standard subject by accelerating, or decelerating, failure time

S(t|x;) =P[s; > t|x;] = Ply; > log t|x;]
=P [ﬂg +0€ >logt —x/By |x,-]
=S¢ (t exp{—x;Bx})

» however, AFT is a precarious restrictive assumption (Con)
S(t|x) = P[logs > logt] = 1 - F, (log t;x’ 3, 0°?)
the covariates can only explain a log-linear location shift



Survival analysis with AFT BART
NFT notation

Henderson et al. 2018 Bijostatistics
» y; = u(x;) + € where €|u; ~ N(,u,-, 0'2): Pro

1 "X BART
» To ensure identifiability, constrain % YiMi=0

> 4;|G ~G
Gla "~" DP (e, Fy)
> S(t,x)=1- %Ziq’(w
Con: the covariates still only explain a log-linear location shift



Survival analysis with NFT BART

» y; = u(x;) + € where €|(u;, 07) ~ N(pi, a'l.20'2(x,~)): Pro
P BART
o? "X HBART

> To ensure identifiability: & X; s =0 and & ¥, 02 =1

» if 6; =1, then y; =logt;
else draw

I(logt;, o0) ifo; =0

.~N i + x.’0'.20'2x'
Vi (pi + p(xi), of o’ ( ‘)){I(—oo,logti) if §; =2

> (ui,09)IG ~G
Gla " DP (a, Fy)
logt—pu;—
> S(tx) =1- 4 3, 0 (tone
Pro: the covariates can explain a location shift and rescaling!



Dirichlet Process Mixtures (DPM)

Ferguson 1973 & Antoniak 1974 Annals of Statistics;
Escobar & West 1995, Geng et al. 2018 JASA; Neal 2000 JCGS

yil6; ~ F(6;) usual notation
wherei =1,...,N
yil;, ~ F(6;,) ephemeral random clusters
where ¢; € {1,...,k}
k € {1,...,N} k is random

prior

0;G ~ G nonparametric (Pro) parametric (Con): 6; "~ F

prior

Gla "~ DP («, Fy) G ‘“centered” on Fj
a "% Gamma (a, b) concentration parameter
« k
0, ~ Fy integrating over G
1 .
02'01 ~ 1+(1’6K(01)+ 1+aF0 mixture



Constrained DPM

Yang et al. 2010 Computational Statistics and Data Analysis
» How do we constrain % ik =07
» Simply sample (fi;,0:)|G ~ G as usual
Let fio =  X; fli
And p; = f1; — fio
> Similarly, if we need to constrain x ¥; 0 =1
Let 0 = \/% > 6'l.2
And g; = 6','/6'0



Low Information Omnibus (LI1O)

prior hierarchy
Shi, Martens, Banerjee, Laud 2018 Bayesian Analysis
» With either DPM or Constrained DPM
» For convenience, re-parameterize in terms of 7; = o
Fo(po, ko, ao, bo) is NoGa
[pis Tilkos bol = [7ilbo] [pilTi, kol

. rior
with 1;]bg PP Gamma (ag, by)
prior

and pil|ti, ko~ N(po, (tiko)™?)
» LIO prior parameter settings: (standardized,
unstandardized; finite variance of errors for NFT)
(0, m;0) elicited median of the data
(1,5031) elicited % distance from the median to the 95%-ile

if no other recourse, then mg and s¢ can be set empirically
Ho = (0,mq/s030)
prior

ko ~ Gamma (1.5, (7.5, 7.5/s§;7.5))
ap = (1.5,2;3)

prior

by~ Gamma((0.5,0.5;2), (1,1/s(2);1))

2



NFT model: prediction intervals

> logt; = y; = pu(x;) + & where € ~ N(p;, 070?(x;))

To ensure identifiability: & ¥; ;i =0 and 5 ¥, 07 =1
> F. = ﬁ i N(p,-, a'iz): nonparametric mixture of Normals
» 1 — @ Prediction Interval

(u(x) +cappo(x), p(x)+c1o0/20(x))
where ¢, = F-1(n)



NFT scenario #(16) : N =500 with 50% censoring
f(x) =6x3, s(x) = exp0.5x,
logt = f(x) +s(x)e where € ~ £(16)
and x ~ U(-1,1): R? = 84.8% uncensored, R? = 85.1% censored
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NFT scenario t(4) : N =500 with 50% censoring
f(x) =6x3, s(x) = exp0.5x, logt = f(x) + s(x)e where € ~ £(4)
and x ~ U(-1,1): R? = 80.7% uncensored, R? = 78.3% censored

10
|

— NFT -
— True . I

log (t)
0
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Neither AFT nor NFT scenario: AFT failure!

N =500 with 50% censoring
Wei (0.8 + 1.2x,20 + 40x) where x ~ B(0.5)
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Neither AFT nor NFT scenario: NFT success!

N =500 with 50% censoring
Wei (0.8 + 1.2x,20 + 40x) where x ~ B(0.5)
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Event-free Survival: TSVS
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Event-free Survival: MDS diseaseb
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Event-free Survival: Recipient Age
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Event-free Survival: Donor Age
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Event-free Survival: Donor Age Waterfall Plot
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Event-free Survival: Donor Sex/Child-birth Parity
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Event-free Survival: Donor Sex/Child-birth Parity

RM:DM
—— RM:DFO: +93.4%, - 0.0%
—— RM:DF1: +92.8%, - 0.0%
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Event-free Survival: Donor Sex/Child-birth Parity

RF:DM
—— RF:DFO0: +14.4%, -13.7%
—— RF:DF1: +9.32%, -17.6%
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